/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h" namespace { using dnnl::memory; using dnnl::primitive; using paddle::framework::DataLayout; using paddle::framework::ExecutionContext; using paddle::platform::GetMKLDNNFormat; using paddle::platform::MKLDNNDeviceContext; using paddle::platform::MKLDNNGetDataType; using paddle::platform::to_void_cast; using Tensor = paddle::framework::Tensor; using paddle::framework::vectorize; using paddle::framework::make_ddim; using paddle::framework::GradVarName; template class MatMulV2MKLDNNHandler : public paddle::platform::MKLDNNHandlerNoCachingT { public: MatMulV2MKLDNNHandler(const mkldnn::engine engine, paddle::platform::Place cpu_place, const std::vector& x_org_dims, bool trans_x, const std::vector& y_org_dims, bool trans_y, bool is_output_fused) : paddle::platform::MKLDNNHandlerNoCachingT(engine, cpu_place) { // M X K * K X N std::vector x_dims(x_org_dims); std::vector y_dims(y_org_dims); const int MB_idx = x_dims.size() - 3; const int H_idx = x_dims.size() - 2; const int W_idx = x_dims.size() - 1; if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]); if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]); const memory::dim M = x_dims[H_idx]; const memory::dim K = x_dims[W_idx]; const memory::dim N = y_dims[W_idx]; std::vector x_strides(x_dims.size() - 3, 1); std::vector y_strides(x_dims.size() - 3, 1); std::vector out_strides(x_dims.size() - 3, 1); std::vector out_ddims(x_dims.size() - 3, 1); x_strides.reserve(x_dims.size()); y_strides.reserve(x_dims.size()); out_strides.reserve(x_dims.size()); if (!trans_x) { x_strides.insert(x_strides.end(), {M * K, K, 1}); } else { x_strides.insert(x_strides.end(), {M * K, 1, M}); } if (!trans_y) { y_strides.insert(y_strides.end(), {N * K, N, 1}); } else { y_strides.insert(y_strides.end(), {N * K, 1, K}); } out_strides.insert(out_strides.end(), {M * N, N, 1}); out_ddims.insert(out_ddims.end(), {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N}); for (int i = x_dims.size() - 4; i >= 0; --i) { out_ddims[i] = std::max(x_dims[i], y_dims[i]); x_strides[i] = x_dims[i + 1] * x_strides[i + 1]; y_strides[i] = y_dims[i + 1] * y_strides[i + 1]; out_strides[i] = out_ddims[i + 1] * out_strides[i + 1]; } if (is_output_fused) { out_strides = FakeTransposeStrides(out_ddims); } auto x_md = memory::desc(x_dims, MKLDNNGetDataType(), x_strides); auto y_md = memory::desc(y_dims, MKLDNNGetDataType(), y_strides); auto out_md = memory::desc(out_ddims, MKLDNNGetDataType(), out_strides); this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md); } std::vector FakeTransposeStrides( const std::vector& matmul_out_dims) const { // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and // transpose axis are: {0, 2, 1, 3} std::vector transpose_axis = {0, 2, 1, 3}; std::vector fake_strides(transpose_axis.size()); int ndims = static_cast(transpose_axis.size()); int total_stride = 1; for (int i = ndims - 1; i >= 0; --i) { fake_strides[transpose_axis[i]] = total_stride; total_stride *= matmul_out_dims[transpose_axis[i]]; } return fake_strides; } std::shared_ptr AcquireWeightsMemory(const Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(), to_void_cast(input_data)); } }; template class MatMulV2MKLDNNKernel : public paddle::operators::MatMulGradMKLDNNKernel { public: void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); } protected: void ExecuteMatMul(const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx, const mkldnn::engine onednn_engine, paddle::platform::Place cpu_place, const Tensor* x, std::vector& x_dims, bool trans_x, const Tensor* y, std::vector& y_dims, bool trans_y, Tensor* out, std::vector& out_dims, int execution_number = 0) const { MatMulV2MKLDNNHandler handler(onednn_engine, ctx.GetPlace(), x_dims, trans_x, y_dims, trans_y, IsOutputFused(ctx)); const auto src_memory_p = handler.AcquireSrcMemory(x); const auto weights_memory_p = handler.AcquireWeightsMemory(y); const auto dst_memory_p = handler.AcquireDstMemory(out); auto matmul_p = handler.AcquireForwardPrimitive(); std::unordered_map matmul_args = { {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_WEIGHTS, *weights_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}; auto& astream = MKLDNNDeviceContext::tls().get_stream(); matmul_p->execute(astream, matmul_args); astream.wait(); auto format = paddle::platform::MKLDNNFormatForSize( out->dims().size(), dnnl::memory::format_tag::nchw); out->set_layout(paddle::framework::DataLayout::kMKLDNN); out->set_format(format); } private: void CalculateMatrixDims(const ExecutionContext& ctx, const std::vector& x_dims, const std::vector& y_dims, std::vector& x_bd_dims, std::vector& y_bd_dims, std::vector& out_dims, Tensor* out) const { if (x_dims.size() == 1) { x_bd_dims[x_bd_dims.size() - 1] = x_dims[0]; } else if (x_dims.size() == 2) { x_bd_dims[x_bd_dims.size() - 1] = x_dims[1]; x_bd_dims[x_bd_dims.size() - 2] = x_dims[0]; } else { for (size_t i = 0; i < x_dims.size(); ++i) { x_bd_dims[i] = x_dims[i]; } } if (y_dims.size() == 1) { y_bd_dims[x_bd_dims.size() - 2] = y_dims[0]; } else if (y_dims.size() == 2) { y_bd_dims[y_bd_dims.size() - 1] = y_dims[1]; y_bd_dims[y_bd_dims.size() - 2] = y_dims[0]; } else { for (size_t i = 0; i < y_dims.size(); ++i) { y_bd_dims[i] = y_dims[i]; } } if ((y_dims.size() == x_dims.size()) && y_dims.size() > 2 && !IsOutputFused(ctx)) { for (size_t i = 0; i < x_dims.size() - 2; ++i) { PADDLE_ENFORCE_EQ( x_dims[i] == y_dims[i] || x_dims[i] == 1 || y_dims[i] == 1, true, paddle::platform::errors::InvalidArgument( "Tensor dimensions are incorrect for broadcasting." "Dimensions in X and Y must be same or equal to 1, but " "received x_dim[%d]=%d and y_dims[%d]= %d", i, x_dims[i], i, y_dims[i])); out_dims[i] = std::max(x_dims[i], y_dims[i]); } out->Resize(make_ddim(out_dims)); } } bool IsOutputFused(const ExecutionContext& ctx) const { auto& fused_reshape_Out = ctx.Attr>("fused_reshape_Out"); auto& fused_transpose_Out = ctx.Attr>("fused_transpose_Out"); return !fused_reshape_Out.empty() && !fused_transpose_Out.empty(); } void RunKernel(const ExecutionContext& ctx) const { const auto& dev_ctx = ctx.template device_context(); const auto& onednn_engine = dev_ctx.GetEngine(); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* out = ctx.Output("Out"); bool trans_x = ctx.Attr("trans_x"); bool trans_y = ctx.Attr("trans_y"); auto x_dims = vectorize(x->dims()); auto y_dims = vectorize(y->dims()); auto out_dims = vectorize(out->dims()); int ndims = std::max(x->dims().size(), y->dims().size()); ndims = std::max(ndims, 3); std::vector x_bd_dims(ndims, 1); std::vector y_bd_dims(ndims, 1); CalculateMatrixDims(ctx, x_dims, y_dims, x_bd_dims, y_bd_dims, out_dims, out); ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_bd_dims, trans_x, y, y_bd_dims, trans_y, out, out_dims); } }; template class MatMulV2GradMKLDNNKernel : public MatMulV2MKLDNNKernel { public: void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); } private: void CalculateGradMatrixDims(const ExecutionContext& ctx, Tensor* dx_tmp, Tensor* dy_tmp, const std::vector& dx_dims, const std::vector& dy_dims, std::vector& dx_bd_dims, std::vector& dy_bd_dims) const { for (size_t i = 0; i < dx_dims.size() - 2; ++i) { if (dx_dims[i] != dy_dims[i]) { if (dx_dims[i] == 1) { dx_bd_dims[i] = dy_dims[i]; } else { dy_bd_dims[i] = dx_dims[i]; } } } dx_tmp->Resize(make_ddim(dx_bd_dims)); dx_tmp->mutable_data(ctx.GetPlace()); dy_tmp->Resize(make_ddim(dy_bd_dims)); dy_tmp->mutable_data(ctx.GetPlace()); } void ReduceSumForMatmulGradOutput(const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx, const mkldnn::engine onednn_engine, const Tensor* dx_tmp, Tensor* dx, std::vector dx_dims) const { paddle::platform::ReductionMKLDNNHandler handler( dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine, ctx.GetPlace(), dx_tmp, dx, dx_dims); auto src_memory_p = handler.AcquireSrcMemory(dx_tmp); auto dst_memory_p = handler.AcquireDstMemory(dx); std::unordered_map reduction_args = { {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}; auto& astream = MKLDNNDeviceContext::tls().get_stream(); auto reduction_p = handler.AcquireForwardPrimitive(); reduction_p->execute(astream, reduction_args); astream.wait(); } void RunKernel(const ExecutionContext& ctx) const { const auto& dev_ctx = ctx.template device_context(); const auto& onednn_engine = dev_ctx.GetEngine(); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto x_dims = vectorize(x->dims()); auto y_dims = vectorize(y->dims()); bool is_broadcast = true; if (x_dims.size() <= 2 || y_dims.size() <= 2) { is_broadcast = false; } else if (x_dims.size() != y_dims.size()) { is_broadcast = true; } else { is_broadcast = !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_dims.size() - 2, y_dims.cbegin()); } // if no broadcasting is needed, we can simply use matmul's grad and avoid // using reduce_sum if (!is_broadcast) { paddle::operators::MatMulGradMKLDNNKernel::Compute(ctx); return; } auto* dout = ctx.Input(GradVarName("Out")); auto* dx = ctx.Output(GradVarName("X")); auto* dy = ctx.Output(GradVarName("Y")); bool trans_x = ctx.Attr("trans_x"); bool trans_y = ctx.Attr("trans_y"); auto dout_dims = vectorize(dout->dims()); int ndims = std::max(x->dims().size(), y->dims().size()); ndims = std::max(ndims, 3); // in broadcasting scenario new memory is required because // reduce sum must be calculated upon broadcasted dims Tensor dx_tmp, dy_tmp; std::vector dx_bd_dims(x_dims); std::vector dy_bd_dims(y_dims); CalculateGradMatrixDims(ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, dx_bd_dims, dy_bd_dims); if (trans_x && trans_y) { this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims, true, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1); this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, true, x, x_dims, true, &dy_tmp, dy_bd_dims, 2); } else if (trans_x) { this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims, false, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1); this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims, false, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2); } else if (trans_y) { this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, false, y, y_dims, false, &dx_tmp, dx_bd_dims, 1); this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, true, x, x_dims, false, &dy_tmp, dy_bd_dims, 2); } else { this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, false, y, y_dims, true, &dx_tmp, dx_bd_dims, 1); this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims, true, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2); } if (x_dims != dx_bd_dims) { ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dx_tmp, dx, x_dims); } else { *dx = std::move(dx_tmp); } if (y_dims != dy_bd_dims) { ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dy_tmp, dy, y_dims); } else { *dy = std::move(dy_tmp); } dx->set_layout(paddle::framework::DataLayout::kMKLDNN); dx->set_format(x->format()); dy->set_layout(paddle::framework::DataLayout::kMKLDNN); dy->set_format(y->format()); } }; } // anonymous namespace namespace ops = paddle::operators; REGISTER_OP_KERNEL(matmul_v2, MKLDNN, ::paddle::platform::CPUPlace, MatMulV2MKLDNNKernel, MatMulV2MKLDNNKernel); REGISTER_OP_KERNEL(matmul_v2_grad, MKLDNN, ::paddle::platform::CPUPlace, MatMulV2GradMKLDNNKernel, MatMulV2GradMKLDNNKernel);