# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from simple_nets import simple_fc_net, fc_with_batchnorm, init_data from parallel_executor_test_base import TestParallelExecutorBase import paddle.fluid as fluid import paddle.fluid.core as core import unittest import os class TestFuseAdamOps(TestParallelExecutorBase): @classmethod def setUpClass(cls): os.environ['CPU_NUM'] = str(4) def _compare_fused_optimizer_ops(self, model, use_cuda, optimizer=fluid.optimizer.Adam): if use_cuda and not core.is_compiled_with_cuda(): return img, label = init_data() feed_dict = {"image": img, "label": label} not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence( model, feed_dict=feed_dict, use_cuda=use_cuda, fuse_all_optimizer_ops=False, memory_opt=False, # avoid the gradient's name changed in Python side. optimizer=optimizer) fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence( model, feed_dict=feed_dict, use_cuda=use_cuda, fuse_all_optimizer_ops=True, memory_opt=False, # avoid the gradient's name changed in Python side. optimizer=optimizer) for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss): self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss): self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) def test_simple_fc_with_fuse_op(self): self._compare_fused_optimizer_ops(simple_fc_net, True) self._compare_fused_optimizer_ops(simple_fc_net, False) def test_batchnorm_fc_with_fuse_op(self): self._compare_fused_optimizer_ops(fc_with_batchnorm, True) self._compare_fused_optimizer_ops(fc_with_batchnorm, False) class TestFuseSGDOps(TestFuseAdamOps): def sgd_optimizer(self, learning_rate=1e-3): return fluid.optimizer.SGD(learning_rate=learning_rate) def test_simple_fc_with_fuse_op(self): self._compare_fused_optimizer_ops( simple_fc_net, True, optimizer=self.sgd_optimizer) self._compare_fused_optimizer_ops( simple_fc_net, False, optimizer=self.sgd_optimizer) def test_batchnorm_fc_with_fuse_op(self): self._compare_fused_optimizer_ops( fc_with_batchnorm, True, optimizer=self.sgd_optimizer) self._compare_fused_optimizer_ops( fc_with_batchnorm, False, optimizer=self.sgd_optimizer) class TestFuseMomentumOps(TestFuseAdamOps): def momentum_optimizer(self, learning_rate=1e-3): return fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=0.1) def test_simple_fc_with_fuse_op(self): self._compare_fused_optimizer_ops( simple_fc_net, True, optimizer=self.momentum_optimizer) self._compare_fused_optimizer_ops( simple_fc_net, False, optimizer=self.momentum_optimizer) def test_batchnorm_fc_with_fuse_op(self): self._compare_fused_optimizer_ops( fc_with_batchnorm, True, optimizer=self.momentum_optimizer) self._compare_fused_optimizer_ops( fc_with_batchnorm, False, optimizer=self.momentum_optimizer) if __name__ == '__main__': unittest.main()