// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifdef PADDLE_WITH_CUDA #include #include #endif #ifdef PADDLE_WITH_HIP #include #endif namespace paddle { namespace operators { namespace kernel_primitives { namespace details { #define INT_BITS 32 template struct alignas(sizeof(T) * VecSize) VectorType { T val[VecSize]; }; struct FastDivMod { // 1st value represents the result of input number divides by recorded divisor // 2nd value represents the result of input number modulo by recorded divisor using DivModT = VectorType; FastDivMod() {} HOSTDEVICE FastDivMod(uint32_t d) : divisor(d) { static_assert(sizeof(unsigned int) == 4, "Only Support 32-bit unsigned int."); for (shift_val = 0; shift_val < INT_BITS; ++shift_val) { auto shift_limit = 1 << shift_val; if (shift_limit >= divisor) break; } uint64_t long_one = 1; uint64_t temp_div = ((long_one << INT_BITS) * ((long_one << shift_val) - divisor)) / divisor + 1; multiplier = temp_div; } __device__ __forceinline__ uint32_t Div(uint32_t n) const { uint32_t t = __umulhi(n, multiplier); return (t + n) >> shift_val; } __device__ __forceinline__ DivModT Divmod(uint32_t n) const { uint32_t q = Div(n); DivModT result = {q, n - q * divisor}; return result; } int32_t divisor; int32_t shift_val; uint32_t multiplier; }; template struct BroadcastConfig { FastDivMod divmoders[kDims]; uint32_t strides[framework::DDim::kMaxRank]; HOSTDEVICE BroadcastConfig() {} HOSTDEVICE BroadcastConfig(const std::vector& out_dims, const std::vector& in_dims, int dim_size) { std::vector strides_in; std::vector divmoders_in; // for divmoders divmoders_in.resize(dim_size); for (int i = 0; i < dim_size; ++i) { divmoders_in[i] = FastDivMod(out_dims[i]); } // for strides strides_in.resize(dim_size, 1); for (int i = 0; i < dim_size; ++i) { strides_in[i] = in_dims[i] == 1 ? 0 : strides_in[i]; strides_in[i] = (i != 0 && strides_in[i] != 0) ? std::accumulate(in_dims.begin(), in_dims.begin() + i, 1, std::multiplies()) : strides_in[i]; } memcpy(strides, strides_in.data(), kDims * sizeof(uint32_t)); memcpy(divmoders, divmoders_in.data(), kDims * sizeof(FastDivMod)); } }; #undef INT_BITS } // namespace details /** * @brief load data from src to dst, src can be 1D data or 2D data. Note that * you can use this function when you are sure that the data will not cross the * boundary. * @typename: * Tx: data type of src * Ty: data type of dstt * NX: the cols of src, dst * NY: the rows of src, dst * BlockSize: the config of this device * @param: * stride_nx: the stride of cols * stride_ny: the stride of rows */ template __device__ __forceinline__ void ReadData(Ty* dst, const Tx* __restrict__ src, int stride_nx, int stride_ny) { int thread_offset = threadIdx.x * NX; if (NY == 1 && NX == 1) { dst[0] = static_cast(src[thread_offset]); } else if (NX == 1) { #pragma unroll for (int idy = 0; idy < NY; ++idy) { dst[idy] = static_cast(src[thread_offset + idy * stride_ny]); } } else if (NY == 1) { #pragma unroll for (int idx = 0; idx < NX; ++idx) { dst[idx] = static_cast(src[thread_offset + idx * stride_nx]); } } else { #pragma unroll for (int idx = 0; idx < NX; ++idx) { #pragma unroll for (int idy = 0; idy < NY; ++idy) { dst[idy * NX + idx] = static_cast( src[thread_offset + idx * stride_nx + idy * stride_ny]); } } } } /** * @brief load data from src to dst with stride, src can be 1D data or 2D data. * When boundary judgment is required, you need to set a to true, and a is false * by default. * @typename: * Tx: data type of src * Ty: data type of dstt * NX: the cols of src, dst * NY: the rows of src, dst * BlockSize: the config of this device * IsBoundary: whether to make boundary judgment * @param: * size_nx: number of columns to be processed by the current block * size_ny: number of rows to be processed by the current block * stride_nx: the stride of cols * stride_ny: the stride of rows */ template __device__ __forceinline__ void ReadData(Ty* dst, const Tx* __restrict__ src, int size_nx, int size_ny, int stride_nx, int stride_ny) { int thread_offset = threadIdx.x * NX; int left_size_nx = size_nx - thread_offset; // Each branch is added for better performance if (NX == 1 && NY == 1) { // for NX == 1 and NY == 1 if (IsBoundary) { if (left_size_nx > 0) { dst[0] = static_cast(src[thread_offset]); } } else { dst[0] = static_cast(src[thread_offset]); } } else if (NX == 1) { // for NX == 1 and NY != 1 #pragma unroll for (int idy = 0; idy < NY; ++idy) { if (IsBoundary) { if (idy >= size_ny) { break; } } dst[idy] = static_cast(src[thread_offset + idy * stride_ny]); } } else if (NY == 1) { // for NY == 1 and NX != 1 #pragma unroll for (int idx = 0; idx < NX; ++idx) { if (IsBoundary) { if (idx >= left_size_nx) { break; } } dst[idx] = static_cast(src[thread_offset + idx * stride_nx]); } } else { // for NX != 1 and NY != 1 #pragma unroll for (int idx = 0; idx < NX; ++idx) { if (IsBoundary) { if (idx >= left_size_nx) { break; } } #pragma unroll for (int idy = 0; idy < NY; ++idy) { if (IsBoundary) { if (idy >= size_ny) { break; } } dst[idy * NX + idx] = static_cast( src[thread_offset + idx * stride_nx + idy * stride_ny]); } } } } template __device__ __forceinline__ void Init(T* dst, T init_data) { #pragma unroll for (int i = 0; i < NX; i++) { dst[i] = init_data; } } /** @brief: ReadData * @brief load data from src to dst, src can be 1D data, you should set NY = 1. * When boundary judgment is required, you need to set a to true, and a is false * by default. * @typename: * T : the data type of src * NX: the cols of src, dst * NY: in this function NY only can be 1 * BlockSize: the config of this device * IsBoundary: whether to make boundary judgment * @param: * num: number of columns to be processed by the current block */ template __device__ __forceinline__ void ReadData(T* dst, const T* __restrict__ src, int num) { if (IsBoundary) { // blockDim.x * NX > num int thread_offset = threadIdx.x * NX; #pragma unroll for (int idx = 0; idx < NX; ++idx) { if (idx + thread_offset < num) { dst[idx] = src[thread_offset + idx]; } } } else { // blockDim,x * NX < num const int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1; const int kVectorsPerThread = NX / kVectorSize; int thread_offset = threadIdx.x * kVectorsPerThread; using VecType = details::VectorType; const VecType* vec_input = reinterpret_cast(src); VecType vec_temp[kVectorsPerThread]; #pragma unroll for (int i = 0; i < kVectorsPerThread; ++i) { vec_temp[i] = vec_input[thread_offset + i]; #pragma unroll for (int idx = 0; idx < NX; ++idx) { dst[idx] = *(reinterpret_cast(vec_temp) + idx); } } } } /** * @brief: read data for broadcast * @typename: * T : the data type of src * NX: the cols of src, dst * NY: in this function NY only can be 1 * BlockSize: the config of this device * ShapeSize: the shape size of out. eg in[1, 35], out[32, 35] then shape size * is 2 * IsBoundary: whether to make boundary judgment * @param: * block_offset: data offset of this block, blockDim.x * blockIdx.x * NX; * config: get the global index in src, attention config was declared in host; * total_num_output: total num of output * stride_nx: the stride of cols * stride_ny: the stride of rows */ template __device__ __forceinline__ void ReadDataBc( T* dst, const T* __restrict__ src, uint32_t block_offset, details::BroadcastConfig config, int total_num_output, int stride_nx, int stride_ny) { uint32_t thread_offset = block_offset + threadIdx.x * NX; uint32_t index_src = 0; #pragma unroll for (int ny = 0; ny < NY; ++ny) { #pragma unroll for (uint32_t nx = 0; nx < NX; ++nx) { uint32_t index_output = thread_offset + ny * stride_ny + nx * stride_nx; index_src = 0; if (IsBoundary) { if (index_output >= total_num_output) { break; } } #pragma unroll for (int i = 0; i < ShapeSize; ++i) { auto fast_divmoder = config.divmoders[i].Divmod(index_output); index_output = fast_divmoder.val[0]; index_src += fast_divmoder.val[1] * config.strides[i]; } dst[nx + ny * NX] = src[index_src]; } } } /** * @brief: read data for broadcast * @typename: * T : the data type of src * NX: the cols of src, dst * NY: in this function NY only can be 1 * BlockSize: the config of this device * ShapeSize: the shape size of out. eg in[1, 35], out[32, 35] then shape size * is 2 * IndexCal: get the global index in src, attention config was declared in host; * IsBoundary: whether to make boundary judgment * @param: * block_offset: data offset of this block, blockDim.x * blockIdx.x * NX; * index_cal: get the global index in src, attention config was declared in * host; * size_nx: number of columns to be processed by the current block * size_ny: number of rows to be processed by the current block * stride_nx: the stride of cols * stride_ny: the stride of rows * reduce_last_dim: according to the block split set threadIdx */ template __device__ __forceinline__ void ReadDataReduce( T* dst, const T* __restrict__ src, int block_offset, const IndexCal& index_cal, int size_nx, int size_ny, int stride_nx, int stride_ny, bool reduce_last_dim) { int thread_offset = 0; if (reduce_last_dim) { thread_offset = block_offset + threadIdx.x; } else { thread_offset = block_offset + threadIdx.y; } if (NX == 1) { #pragma unroll for (int ny = 0; ny < NY; ++ny) { if (IsBoundary) { if (thread_offset >= size_ny) { break; } } uint32_t index_src = index_cal(thread_offset); dst[ny] = src[index_src]; thread_offset += stride_ny; } } else { #pragma unroll for (int nx = 0; nx < NX; ++nx) { if (IsBoundary) { if (nx * stride_nx >= size_nx) { break; } } #pragma unroll for (int ny = 0; ny < NY; ++ny) { if (IsBoundary) { if (nx * stride_nx >= size_nx) { break; } } uint32_t index_src = index_cal(thread_offset); dst[nx + ny * NX] = src[index_src]; thread_offset += stride_ny; } thread_offset += stride_nx; } } } /** * @brief store data from src to dst, src can be 1D data, you should set NY = 1. * When boundary judgment is required, you need to set a to true, and a is false * by default. * @typename: * T : the data type of src * NX: the cols of src, dst * NY: in this function NY only can be 1 * BlockSize: the config of this device * IsBoundary: whether to make boundary judgment * @param: * num: number of columns to be processed by the current block */ template __device__ __forceinline__ void WriteData(T* dst, T* __restrict__ src, int num) { if (IsBoundary) { int thread_offset = threadIdx.x * NX; #pragma unroll for (int idx = 0; idx < NX; ++idx) { if ((thread_offset + idx) < num) { dst[thread_offset + idx] = src[idx]; } } } else { // Vector type const int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1; const int kVectorsPerThread = NX / kVectorSize; int thread_offset = threadIdx.x * kVectorsPerThread; using VecType = details::VectorType; VecType* vec_dst = reinterpret_cast(dst); VecType vec_temp[kVectorsPerThread]; #pragma unroll for (int idx = 0; idx < kVectorsPerThread; ++idx) { vec_temp[idx] = *(reinterpret_cast(src) + idx); vec_dst[thread_offset + idx] = vec_temp[idx]; } } } } // namespace kernel_primitives } // namespace operators } // namespace paddle