/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/kernels/expand_as_kernel.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/matrix_solve.h" #include "paddle/phi/kernels/funcs/reduce_function.h" #include "paddle/phi/kernels/funcs/reduce_functor.h" #include "paddle/phi/kernels/impl/solve_kernel_impl.h" #include "paddle/phi/kernels/squeeze_kernel.h" #include "paddle/phi/kernels/unsqueeze_kernel.h" #if defined(__NVCC__) || defined(__HIPCC__) #include "paddle/phi/kernels/gpu/reduce.h" #endif namespace phi { template struct ReduceSumForSolvelGrad { void operator()(const Context& dev_ctx, const DenseTensor& input, DenseTensor* output, const std::vector& reduce_dims, bool keep_dims); }; template struct ReduceSumForSolvelGrad { void operator()(const CPUContext& dev_ctx, const DenseTensor& input, DenseTensor* output, const std::vector& reduce_dims, bool keep_dims) { std::vector reduce_dims_tmp(reduce_dims.begin(), reduce_dims.end()); funcs::ReduceKernelImpl( dev_ctx, input, output, reduce_dims_tmp, keep_dims, false); } }; #if defined(__NVCC__) || defined(__HIPCC__) template struct ReduceSumForSolvelGrad { void operator()(const GPUContext& dev_ctx, const DenseTensor& input, DenseTensor* output, const std::vector& reduce_dims, bool keep_dims) { phi::funcs::ReduceKernel>( dev_ctx, input, output, kps::IdentityFunctor(), reduce_dims); } }; #endif template void SolveGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy) { bool is_vector = false; is_vector = is_vector_rhs(x, y); DenseTensor tmp_y; if (is_vector) { dev_ctx.Alloc(&tmp_y, y.dtype()); phi::Unsqueeze(dev_ctx, y, {-1}, &tmp_y, nullptr); } else { tmp_y.Resize(y.dims()); dev_ctx.Alloc(&tmp_y, y.dtype()); phi::Copy(dev_ctx, y, dev_ctx.GetPlace(), false, &tmp_y); } DenseTensor tmp_x; tmp_x.Resize(x.dims()); dev_ctx.Alloc(&tmp_x, x.dtype()); phi::Copy(dev_ctx, x, dev_ctx.GetPlace(), false, &tmp_x); std::vector x_broadcast_dims; std::vector y_broadcast_dims; std::tie(x_broadcast_dims, y_broadcast_dims) = get_broadcast_dims(tmp_x, tmp_y); // tmp_dx DenseTensor tmp_dx; tmp_dx.Resize(phi::make_ddim(x_broadcast_dims)); dev_ctx.template Alloc(&tmp_dx); // tmp_dy DenseTensor tmp_dy; tmp_dy.Resize(phi::make_ddim(y_broadcast_dims)); dev_ctx.template Alloc(&tmp_dy); DenseTensor tmp_input(x.dtype()); const auto& new_dims_vec = phi::funcs::getNewDimsVec(x.dims()); tmp_input.Resize(phi::make_ddim(new_dims_vec)); dev_ctx.template Alloc(&tmp_input); phi::funcs::TransposeNormal trans; std::vector new_axis = phi::funcs::getNewAxis(x.dims().size()); trans(dev_ctx, x, &tmp_input, new_axis); if (dy) { dev_ctx.template Alloc(dy); linalg_solve(dev_ctx, tmp_input, dout, &tmp_dy); } if (dx) { dev_ctx.template Alloc(dx); // to get dx auto blas = phi::funcs::GetBlas(dev_ctx); if (x.dims().size() == 2 && y.dims().size() == 2) { auto mat_dim_a1 = phi::funcs::CreateMatrixDescriptor(tmp_dy.dims(), 0, false); auto mat_dim_b1 = phi::funcs::CreateMatrixDescriptor(out.dims(), 0, true); blas.MatMul(tmp_dy, mat_dim_a1, out, mat_dim_b1, T(-1), &tmp_dx, T(0)); } else if (is_vector_rhs(x, y)) { DenseTensor tmp_dy_; dev_ctx.Alloc(&tmp_dy_, y.dtype()); phi::Unsqueeze(dev_ctx, tmp_dy, paddle::experimental::IntArray({-1}), &tmp_dy_, nullptr); DenseTensor tmp_out_; dev_ctx.Alloc(&tmp_out_, out.dtype()); phi::Unsqueeze(dev_ctx, out, paddle::experimental::IntArray({-1}), &tmp_out_, nullptr); auto mat_dim_a1 = phi::funcs::CreateMatrixDescriptor(tmp_dy_.dims(), 0, false); auto mat_dim_b1 = phi::funcs::CreateMatrixDescriptor(tmp_out_.dims(), 0, true); blas.MatMul( tmp_dy_, mat_dim_a1, tmp_out_, mat_dim_b1, T(-1), &tmp_dx, T(0)); } else { auto mat_dim_a1 = phi::funcs::CreateMatrixDescriptor(tmp_dy.dims(), 0, false); auto mat_dim_b1 = phi::funcs::CreateMatrixDescriptor(out.dims(), 0, true); blas.MatMul(tmp_dy, mat_dim_a1, out, mat_dim_b1, T(-1), &tmp_dx, T(0)); } } if (y.dims() != tmp_dy.dims()) { DenseTensor dy_help; dy_help.Resize(tmp_dy.dims()); dev_ctx.Alloc(&dy_help, tmp_dy.dtype()); phi::Copy(dev_ctx, tmp_dy, dev_ctx.GetPlace(), false, &dy_help); // get dims std::vector x_dims = vectorize(x.dims()); std::vector y_dims = vectorize(y.dims()); std::vector dout_dims = vectorize(dout.dims()); if (is_vector_rhs(x, y)) { dout_dims.push_back(1); } int y_ndim = y_dims.size(); int ndim = dout_dims.size(); const std::vector dy_help_dims = vectorize(dy_help.dims()); std::vector dy_broadcast_dims(ndim); std::fill( dy_broadcast_dims.data(), dy_broadcast_dims.data() + ndim - y_ndim, 1); std::copy(y_dims.data(), y_dims.data() + y_ndim, dy_broadcast_dims.data() + ndim - y_ndim); std::vector dy_reduce_dims; for (int idx = 0; idx <= ndim - 3; idx++) { if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) { dy_reduce_dims.push_back(idx); } } // reduce sum to get grad by ReduceSum if (dy) { if (dy_reduce_dims.empty()) { *dy = std::move(dy_help); } else { bool keep_dim = true; if (dy_help.dims().size() != dy->dims().size()) { keep_dim = false; } ReduceSumForSolvelGrad()( dev_ctx, dy_help, dy, dy_reduce_dims, keep_dim); } dy->Resize(y.dims()); } } else { phi::Copy(dev_ctx, tmp_dy, dev_ctx.GetPlace(), false, dy); } if (x.dims() != tmp_dx.dims()) { DenseTensor dx_help; dx_help.Resize(tmp_dx.dims()); dev_ctx.Alloc(&dx_help, tmp_dx.dtype()); phi::Copy(dev_ctx, tmp_dx, dev_ctx.GetPlace(), false, &dx_help); // get dims std::vector x_dims = vectorize(x.dims()); std::vector y_dims = vectorize(y.dims()); int x_ndim = x_dims.size(); int ndim = x_broadcast_dims.size(); const std::vector dx_help_dims = vectorize(dx_help.dims()); std::vector dx_broadcast_dims(ndim); std::fill( dx_broadcast_dims.data(), dx_broadcast_dims.data() + ndim - x_ndim, 1); std::copy(x_dims.data(), x_dims.data() + x_ndim, dx_broadcast_dims.data() + ndim - x_ndim); std::vector dx_reduce_dims; for (int idx = 0; idx <= ndim - 3; idx++) { if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) { dx_reduce_dims.push_back(idx); } } // reduce sum to get grad by ReduceSum if (dx) { dev_ctx.template Alloc(dx); if (dx_reduce_dims.empty()) { *dx = std::move(dx_help); } else { bool keep_dim = true; if (dx_help.dims().size() != dx->dims().size()) { keep_dim = false; } ReduceSumForSolvelGrad()( dev_ctx, dx_help, dx, dx_reduce_dims, keep_dim); } dx->Resize(x.dims()); } } else { phi::Copy(dev_ctx, tmp_dx, dev_ctx.GetPlace(), false, dx); } } } // namespace phi