# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import shutil import tempfile import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Linear from paddle.distributed import fleet from paddle.fluid.dygraph import nn from paddle.fluid.framework import _test_eager_guard from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model epoch = 10 paddle.seed(2022) np.random.seed(2022) base_lr = 0.1 momentum_rate = 0.9 l2_decay = 1e-4 batch_size = 100 fleet.init(is_collective=True) class MLP(fluid.Layer): def __init__(self, linear_size=1000, param_attr=None, bias_attr=None): super(MLP, self).__init__() self._linear1 = Linear(linear_size, linear_size) self._linear2 = Linear(linear_size, linear_size) self._linear3 = Linear(linear_size, 10) def forward(self, inputs): y = self._linear1(inputs) y = self._linear2(y) y = self._linear3(y) return y def reader_decorator(linear_size=1000): def __reader__(): for _ in range(100): img = np.random.rand(linear_size).astype('float32') label = np.ones(1).astype('int64') yield img, label return __reader__ def optimizer_setting(model, use_pure_fp16, opt_group=False): clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0) optimizer = paddle.optimizer.Momentum( parameters=[{ "params": list(model.parameters()) }] if opt_group else list(model.parameters()), learning_rate=0.001, weight_decay=0.00001, grad_clip=clip, multi_precision=use_pure_fp16) return optimizer def train_mlp(model, shard_level, use_pure_fp16, output_dir): group = paddle.distributed.new_group([0, 1]) optimizer = optimizer_setting(model=model, use_pure_fp16=use_pure_fp16) model = paddle.amp.decorate(models=model, level='O2', save_dtype='float32') scaler = paddle.amp.GradScaler(init_loss_scaling=32768) model, optimizer, scaler = group_sharded_parallel( model=model, optimizer=optimizer, level=shard_level, scaler=scaler) train_reader = paddle.batch( reader_decorator(), batch_size=batch_size, drop_last=True) train_loader = paddle.io.DataLoader.from_generator( capacity=32, use_double_buffer=True, iterable=True, return_list=True, use_multiprocess=True) train_loader.set_sample_list_generator(train_reader) for eop in range(epoch): model.train() for batch_id, data in enumerate(train_loader()): img, label = data label.stop_gradient = True img.stop_gradient = True with paddle.amp.auto_cast(True, level='O2'): out = model(img) loss = paddle.nn.functional.cross_entropy( input=out, label=label) avg_loss = paddle.mean(x=loss.cast(dtype=paddle.float32)) if not use_pure_fp16: avg_loss.backward() optimizer.step() else: scaler.scale(avg_loss).backward() scaler.step(optimizer) scaler.update() optimizer.clear_grad() save_group_sharded_model(model, output=output_dir, optimizer=optimizer) return model.parameters() def test_sharding_api(): mlp, mlp1, mlp2 = MLP(), MLP(), MLP() state_dict = mlp.state_dict() mlp1.set_state_dict(state_dict) mlp2.set_state_dict(state_dict) output_dir = tempfile.mkdtemp() # fp16 stage2_params = train_mlp( mlp1, shard_level="os_g", use_pure_fp16=True, output_dir=output_dir) stage3_params = train_mlp( mlp2, shard_level="p_g_os", use_pure_fp16=True, output_dir=output_dir) for i in range(len(stage3_params)): np.testing.assert_allclose( stage2_params[i].numpy(), stage3_params[i].numpy(), rtol=1e-4, atol=1e-3) shutil.rmtree(output_dir) if __name__ == '__main__': with _test_eager_guard(): pass test_sharding_api()