/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/inference/tests/api/tester_helper.h" DEFINE_bool(disable_mkldnn_fc, false, "Disable usage of MKL-DNN's FC op"); namespace paddle { namespace inference { namespace analysis { void SetConfig(AnalysisConfig *cfg) { cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params"); cfg->DisableGpu(); cfg->SwitchIrOptim(); cfg->SwitchSpecifyInputNames(); cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads); } void SetInput(std::vector> *inputs) { SetFakeImageInput(inputs, FLAGS_infer_model); } void SetOptimConfig(AnalysisConfig *cfg) { std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model"; cfg->SetModel(optimModelPath + "/model", optimModelPath + "/params"); cfg->DisableGpu(); cfg->SwitchIrOptim(); cfg->SwitchSpecifyInputNames(); cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads); } // Easy for profiling independently. void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); if (use_mkldnn) { cfg.EnableMKLDNN(); if (!FLAGS_disable_mkldnn_fc) cfg.pass_builder()->AppendPass("fc_mkldnn_pass"); } std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); } TEST(Analyzer_resnet50, profile) { profile(); } #ifdef PADDLE_WITH_MKLDNN TEST(Analyzer_resnet50, profile_mkldnn) { profile(true /* use_mkldnn */); } #endif // Check the fuse status TEST(Analyzer_resnet50, fuse_statis) { AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); LOG(INFO) << "num_ops: " << num_ops; } // Compare result of NativeConfig and AnalysisConfig void compare(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); if (use_mkldnn) { cfg.EnableMKLDNN(); if (!FLAGS_disable_mkldnn_fc) cfg.pass_builder()->AppendPass("fc_mkldnn_pass"); } std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } TEST(Analyzer_resnet50, compare) { compare(); } #ifdef PADDLE_WITH_MKLDNN TEST(Analyzer_resnet50, compare_mkldnn) { compare(true /* use_mkldnn */); } #endif // Compare Deterministic result TEST(Analyzer_resnet50, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } // Save optim model TEST(Analyzer_resnet50, save_optim_model) { AnalysisConfig cfg; std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model"; #ifdef _WIN32 _mkdir(optimModelPath.c_str()); #else mkdir(optimModelPath.c_str(), 0777); #endif SetConfig(&cfg); SaveOptimModel(&cfg, optimModelPath); } void CompareOptimAndOrig(const PaddlePredictor::Config *orig_config, const PaddlePredictor::Config *optim_config, const std::vector> &inputs) { PrintConfig(orig_config, true); PrintConfig(optim_config, true); std::vector> orig_outputs, optim_outputs; TestOneThreadPrediction(orig_config, inputs, &orig_outputs, false); TestOneThreadPrediction(optim_config, inputs, &optim_outputs, false); CompareResult(orig_outputs.back(), optim_outputs.back()); } TEST(Analyzer_resnet50, compare_optim_orig) { AnalysisConfig orig_cfg; AnalysisConfig optim_cfg; SetConfig(&orig_cfg); SetOptimConfig(&optim_cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareOptimAndOrig( reinterpret_cast(&orig_cfg), reinterpret_cast(&optim_cfg), input_slots_all); } } // namespace analysis } // namespace inference } // namespace paddle