// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/kernels/arm/concat_compute.h" #include #include #include "paddle/fluid/lite/arm/math/funcs.h" #include "paddle/fluid/lite/core/compatible_tensor.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { std::vector stride_numel(const DDim& ddim) { std::vector strides(ddim.size()); strides[ddim.size() - 1] = ddim[ddim.size() - 1]; for (int i = ddim.size() - 2; i >= 0; --i) { strides[i] = strides[i + 1] * ddim[i]; } return strides; } void ConcatCompute::Run() { auto& param = Param(); std::vector inputs = param.x; auto* out = param.output; int axis = param.axis; out->mutable_data(); /// Sometimes direct copies will be faster, this maybe need deeply analysis. if (axis == 0 && inputs.size() < 10) { size_t output_offset = 0; for (auto* in : inputs) { auto in_stride = stride_numel(in->dims()); auto out_stride = stride_numel(out->dims()); void* dst = out->mutable_data() + output_offset; const void* src = in->data(); #if 0 LOG(INFO) << "out_stride.size():" << out_stride.size(); LOG(INFO) << "out_stride[0]" << out_stride[0]; for (int i=0; i < out_stride.size(); ++i) { LOG(INFO) << "out_stride[" << i << "]:" << out_stride[i]; } LOG(INFO) << "in_stride.size():" << in_stride.size(); for (int i=0; i < in_stride.size(); ++i) { LOG(INFO) << "in_stride[" << i << "]:" << in_stride[i]; } #endif // src and dst tensor should have the same dims size. CHECK(in_stride.size() == out_stride.size()); std::memcpy(dst, src, sizeof(float) * in_stride[0]); output_offset += in_stride[0]; } } else { std::vector inputs_concat(inputs.size()); for (int j = 0; j < inputs.size(); ++j) { inputs_concat[j] = inputs[j]; } lite::arm::math::concat_func(inputs_concat, axis, out); } return; } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(concat, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ConcatCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();