# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import timeit from collections import OrderedDict class Stack(object): """ The stack in a Last-In/First-Out (LIFO) manner. New element is added at the end and an element is removed from that end. """ def __init__(self): self.items = [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def is_empty(self): return len(self.items) == 0 def peek(self): if not self.is_empty(): return self.items[len(self.items) - 1] else: return None class Event(object): """ A Event is used to record the cost of every step and the cost of the total steps except skipped steps. """ def __init__(self): self.reader_cost_averager = TimeAverager() self.batch_cost_averager = TimeAverager() self.total_samples = 0 self.total_iters = 0 self.skip_iter = 10 self.reader_records = dict(max=0, min=float('inf'), total=0) self.batch_records = dict(max=0, min=float('inf'), total=0) self.speed_records = dict(max=0, min=float('inf')) self.reader = None self.need_record = True # The speed mode depends on the setting of num_samples, there # are 2 modes: steps/s(num_samples=None) or samples/s. self.speed_mode = 'samples/s' # The speed unit depends on the unit of samples that is # specified in step_info and only works in this speed_mode="samples/s". self.speed_unit = 'samples/s' def reset(self): self.reader_cost_averager.reset() self.batch_cost_averager.reset() def record_reader(self, usetime): self.reader_cost_averager.record(usetime) if self.total_iters >= self.skip_iter: self._update_records(usetime, self.reader_records) def record_batch(self, usetime, num_samples=None): if num_samples is None: self.speed_mode = "steps/s" self.speed_unit = "steps/s" self.batch_cost_averager.record(usetime, num_samples) self.total_iters += 1 if self.total_iters >= self.skip_iter: self._update_records(usetime, self.batch_records) if self.speed_mode == "samples/s": current_speed = float(num_samples) / usetime self.total_samples += num_samples else: current_speed = 1.0 / usetime # steps/s self._update_records(current_speed, self.speed_records) def _update_records(self, current_record, records): if current_record > records['max']: records['max'] = current_record elif current_record < records['min']: records['min'] = current_record if 'total' in records.keys(): records['total'] += current_record def reader_average(self): return self.reader_cost_averager.get_average() def batch_average(self): return self.batch_cost_averager.get_average() def speed_average(self): if self.speed_mode == "samples/s": return self.batch_cost_averager.get_ips_average() else: return self.batch_cost_averager.get_step_average() def get_summary(self): if self.total_iters <= self.skip_iter: return {} reader_avg = 0 batch_avg = 0 speed_avg = 0 self.total_iters -= self.skip_iter reader_avg = self.reader_records['total'] / float(self.total_iters) batch_avg = self.batch_records['total'] / float(self.total_iters) if self.speed_mode == "samples/s": speed_avg = float(self.total_samples) / self.batch_records['total'] else: speed_avg = float(self.total_iters) / self.batch_records['total'] reader_summary = dict(max=self.reader_records['max'], min=self.reader_records['min'], avg=reader_avg) batch_summary = dict(max=self.batch_records['max'], min=self.batch_records['min'], avg=batch_avg) ips_summary = dict(max=self.speed_records['max'], min=self.speed_records['min'], avg=speed_avg) reader_ratio = (reader_avg / batch_avg) * 100 summary = dict(reader_summary=reader_summary, batch_summary=batch_summary, ips_summary=ips_summary, reader_ratio=reader_ratio) return summary class Hook(object): """ As the base class. All types of hooks should inherit from it. """ def begin(self, benchmark): pass def end(self, benchmark): pass def before_reader(self, benchmark): pass def after_reader(self, benchmark): pass def after_step(self, benchmark): pass class TimerHook(Hook): """ A hook for recording real-time performance and the summary performance of total steps. """ def __init__(self): self.start_time = timeit.default_timer() self.start_reader = timeit.default_timer() def begin(self, benchmark): """ Create the event for timing and initialize the start time of a step. This function will be called in `Profiler.start()`. """ benchmark.events.push(Event()) benchmark.current_event = benchmark.events.peek() self.start_time = timeit.default_timer() def before_reader(self, benchmark): """ Initialize the start time of the dataloader. This function will be called at the beginning of `next` method in `_DataLoaderIterMultiProcess` or `_DataLoaderIterSingleProcess`. """ self.start_reader = timeit.default_timer() def after_reader(self, benchmark): """ Record the cost of dataloader for the current step. Since the skipped steps are 10, it will update the maximum, minimum and the total time from the step 11 to the current step. This function will be called at the end of `next` method in `_DataLoaderIterMultiProcess` or `_DataLoaderIterSingleProcess`. """ reader_cost = timeit.default_timer() - self.start_reader if (benchmark.current_event is None) or ( not benchmark.current_event.need_record) or (reader_cost == 0): return benchmark.current_event.record_reader(reader_cost) def after_step(self, benchmark): """ Record the cost for the current step. It will contain the cost of the loading data if there is a dataloader. Similar to `after_reader`, it will also update the maximum, minimum and the total time from the step 11 to the current step as well as the maximum and minimum speed of the model. This function will be called in `Profiler.step()`. """ if (benchmark.current_event is None) or (not benchmark.current_event.need_record): return batch_cost = timeit.default_timer() - self.start_time benchmark.current_event.record_batch(batch_cost, benchmark.num_samples) self.start_time = timeit.default_timer() def end(self, benchmark): """ Print the performance summary of the model and pop the current event from the events stack. Since there may be nested timing events, such as evaluation in the training process, the current event needs to be update to the event at the top of the stack. """ if benchmark.events.is_empty(): return self._print_summary(benchmark) benchmark.events.pop() benchmark.current_event = benchmark.events.peek() self.start_time = timeit.default_timer() def _print_summary(self, benchmark): summary = benchmark.current_event.get_summary() if not summary: return print('Perf Summary'.center(100, '=')) if summary['reader_ratio'] != 0: print('Reader Ratio: ' + '%.3f' % (summary['reader_ratio']) + '%') print('Time Unit: s, IPS Unit: %s' % (benchmark.current_event.speed_unit)) print('|', ''.center(15), '|', 'avg'.center(15), '|', 'max'.center(15), '|', 'min'.center(15), '|') # if DataLoader is not called, reader_summary is unnecessary. if summary['reader_summary']['avg'] != 0: self._print_stats('reader_cost', summary['reader_summary']) self._print_stats('batch_cost', summary['batch_summary']) self._print_stats('ips', summary['ips_summary']) def _print_stats(self, item, message_dict): avg_str = '%.5f' % (message_dict['avg']) max_str = '%.5f' % (message_dict['max']) min_str = '%.5f' % (message_dict['min']) print('|', item.center(15), '|', avg_str.center(15), '|', max_str.center(15), '|', min_str.center(15), '|') class TimeAverager(object): """ Record the cost of every step and count the average. """ def __init__(self): self.reset() def reset(self): self._total_iters = 0 self._total_time = 0 self._total_samples = 0 def record(self, usetime, num_samples=None): self._total_iters += 1 self._total_time += usetime if num_samples: self._total_samples += num_samples def get_average(self): """ Get the average cost of loading data or a step. """ if self._total_iters == 0: return 0 return self._total_time / float(self._total_iters) def get_ips_average(self): """ Get the average throughput when speed mode is "samples/s". """ if not self._total_samples or self._total_iters == 0: return 0 return float(self._total_samples) / self._total_time def get_step_average(self): """ Get the average speed when speed mode is "step/s". """ if self._total_iters == 0: return 0 return float(self._total_iters) / self._total_time class Benchmark(object): """ A tool for the statistics of model performance. The `before_reader` and `after_reader` are called in the DataLoader to count the cost of loading the data. The `begin`, `step` and `end` are called to count the cost of a step or total steps. """ def __init__(self): self.num_samples = None self.hooks = OrderedDict(timer_hook=TimerHook()) self.current_event = None self.events = Stack() def step(self, num_samples=None): """ Record the statistic for the current step. It will be called in `Profiler.step()`. """ self.num_samples = num_samples self.after_step() def step_info(self, unit): """ It returns the statistic of the current step as a string. It contains "reader_cost", "batch_cost" and "ips". """ message = '' reader_average = self.current_event.reader_average() batch_average = self.current_event.batch_average() if reader_average: message += ' reader_cost: %.5f s' % (reader_average) if batch_average: if self.current_event.speed_mode == 'steps/s': self.current_event.speed_unit = 'steps/s' else: self.current_event.speed_unit = unit + '/s' message += ' %s: %.5f s' % ('batch_cost', batch_average) speed_average = self.current_event.speed_average() if speed_average: message += ' ips: %.3f %s' % (speed_average, self.current_event.speed_unit) self.current_event.reset() return message def begin(self): for hook in self.hooks.values(): hook.begin(self) def before_reader(self): for hook in self.hooks.values(): hook.before_reader(self) def after_reader(self): for hook in self.hooks.values(): hook.after_reader(self) def after_step(self): for hook in self.hooks.values(): hook.after_step(self) def end(self): for hook in self.hooks.values(): hook.end(self) def check_if_need_record(self, reader): if self.current_event is None: return if self.current_event.need_record: # set reader for the current event at the first iter if self.current_event.reader is None: self.current_event.reader = reader elif self.current_event.reader.__dict__[ '_dataset'] != reader.__dict__['_dataset']: # enter a new task but not calling beign() to record it. # we pause the timer until the end of new task, so that # the cost of new task is not added to the current event. # eg. start evaluation in the training task self.current_event.need_record = False else: # when the new task exits, continue timing for the current event. if self.current_event.reader.__dict__[ '_dataset'] == reader.__dict__['_dataset']: self.current_event.need_record = True self.hooks['timer_hook'].start_time = timeit.default_timer() _benchmark_ = Benchmark() def benchmark(): return _benchmark_