# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from paddle.utils.download import get_weights_path_from_url from functools import partial from .utils import _make_divisible from ..ops import ConvNormActivation __all__ = [] model_urls = { "mobilenet_v3_small_x1.0": ("https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_small_x1.0.pdparams", "34fe0e7c1f8b00b2b056ad6788d0590c"), "mobilenet_v3_large_x1.0": ("https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_large_x1.0.pdparams", "118db5792b4e183b925d8e8e334db3df"), } class SqueezeExcitation(nn.Layer): """ This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1). Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in in eq. 3. This code is based on the torchvision code with modifications. You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L127 Args: input_channels (int): Number of channels in the input image squeeze_channels (int): Number of squeeze channels activation (Callable[..., paddle.nn.Layer], optional): ``delta`` activation. Default: ``paddle.nn.ReLU`` scale_activation (Callable[..., paddle.nn.Layer]): ``sigma`` activation. Default: ``paddle.nn.Sigmoid`` """ def __init__(self, input_channels, squeeze_channels, activation=nn.ReLU, scale_activation=nn.Sigmoid): super().__init__() self.avgpool = nn.AdaptiveAvgPool2D(1) self.fc1 = nn.Conv2D(input_channels, squeeze_channels, 1) self.fc2 = nn.Conv2D(squeeze_channels, input_channels, 1) self.activation = activation() self.scale_activation = scale_activation() def _scale(self, input): scale = self.avgpool(input) scale = self.fc1(scale) scale = self.activation(scale) scale = self.fc2(scale) return self.scale_activation(scale) def forward(self, input): scale = self._scale(input) return scale * input class InvertedResidualConfig: def __init__(self, in_channels, kernel, expanded_channels, out_channels, use_se, activation, stride, scale=1.0): self.in_channels = self.adjust_channels(in_channels, scale=scale) self.kernel = kernel self.expanded_channels = self.adjust_channels( expanded_channels, scale=scale) self.out_channels = self.adjust_channels(out_channels, scale=scale) self.use_se = use_se if activation is None: self.activation_layer = None elif activation == "relu": self.activation_layer = nn.ReLU elif activation == "hardswish": self.activation_layer = nn.Hardswish else: raise RuntimeError("The activation function is not supported: {}". format(activation)) self.stride = stride @staticmethod def adjust_channels(channels, scale=1.0): return _make_divisible(channels * scale, 8) class InvertedResidual(nn.Layer): def __init__(self, in_channels, expanded_channels, out_channels, filter_size, stride, use_se, activation_layer, norm_layer): super().__init__() self.use_res_connect = stride == 1 and in_channels == out_channels self.use_se = use_se self.expand = in_channels != expanded_channels if self.expand: self.expand_conv = ConvNormActivation( in_channels=in_channels, out_channels=expanded_channels, kernel_size=1, stride=1, padding=0, norm_layer=norm_layer, activation_layer=activation_layer) self.bottleneck_conv = ConvNormActivation( in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=filter_size, stride=stride, padding=int((filter_size - 1) // 2), groups=expanded_channels, norm_layer=norm_layer, activation_layer=activation_layer) if self.use_se: self.mid_se = SqueezeExcitation( expanded_channels, _make_divisible(expanded_channels // 4), scale_activation=nn.Hardsigmoid) self.linear_conv = ConvNormActivation( in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, norm_layer=norm_layer, activation_layer=None) def forward(self, x): identity = x if self.expand: x = self.expand_conv(x) x = self.bottleneck_conv(x) if self.use_se: x = self.mid_se(x) x = self.linear_conv(x) if self.use_res_connect: x = paddle.add(identity, x) return x class MobileNetV3(nn.Layer): """MobileNetV3 model from `"Searching for MobileNetV3" `_. Args: config (list[InvertedResidualConfig]): MobileNetV3 depthwise blocks config. last_channel (int): The number of channels on the penultimate layer. scale (float, optional): Scale of channels in each layer. Default: 1.0. num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 1000. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. """ def __init__(self, config, last_channel, scale=1.0, num_classes=1000, with_pool=True): super().__init__() self.config = config self.scale = scale self.last_channel = last_channel self.num_classes = num_classes self.with_pool = with_pool self.firstconv_in_channels = config[0].in_channels self.lastconv_in_channels = config[-1].in_channels self.lastconv_out_channels = self.lastconv_in_channels * 6 norm_layer = partial(nn.BatchNorm2D, epsilon=0.001, momentum=0.99) self.conv = ConvNormActivation( in_channels=3, out_channels=self.firstconv_in_channels, kernel_size=3, stride=2, padding=1, groups=1, activation_layer=nn.Hardswish, norm_layer=norm_layer) self.blocks = nn.Sequential(*[ InvertedResidual( in_channels=cfg.in_channels, expanded_channels=cfg.expanded_channels, out_channels=cfg.out_channels, filter_size=cfg.kernel, stride=cfg.stride, use_se=cfg.use_se, activation_layer=cfg.activation_layer, norm_layer=norm_layer) for cfg in self.config ]) self.lastconv = ConvNormActivation( in_channels=self.lastconv_in_channels, out_channels=self.lastconv_out_channels, kernel_size=1, stride=1, padding=0, groups=1, norm_layer=norm_layer, activation_layer=nn.Hardswish) if with_pool: self.avgpool = nn.AdaptiveAvgPool2D(1) if num_classes > 0: self.classifier = nn.Sequential( nn.Linear(self.lastconv_out_channels, self.last_channel), nn.Hardswish(), nn.Dropout(p=0.2), nn.Linear(self.last_channel, num_classes)) def forward(self, x): x = self.conv(x) x = self.blocks(x) x = self.lastconv(x) if self.with_pool: x = self.avgpool(x) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.classifier(x) return x class MobileNetV3Small(MobileNetV3): """MobileNetV3 Small architecture model from `"Searching for MobileNetV3" `_. Args: scale (float, optional): Scale of channels in each layer. Default: 1.0. num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 1000. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. Examples: .. code-block:: python import paddle from paddle.vision.models import MobileNetV3Small # build model model = MobileNetV3Small(scale=1.0) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) """ def __init__(self, scale=1.0, num_classes=1000, with_pool=True): config = [ InvertedResidualConfig(16, 3, 16, 16, True, "relu", 2, scale), InvertedResidualConfig(16, 3, 72, 24, False, "relu", 2, scale), InvertedResidualConfig(24, 3, 88, 24, False, "relu", 1, scale), InvertedResidualConfig(24, 5, 96, 40, True, "hardswish", 2, scale), InvertedResidualConfig(40, 5, 240, 40, True, "hardswish", 1, scale), InvertedResidualConfig(40, 5, 240, 40, True, "hardswish", 1, scale), InvertedResidualConfig(40, 5, 120, 48, True, "hardswish", 1, scale), InvertedResidualConfig(48, 5, 144, 48, True, "hardswish", 1, scale), InvertedResidualConfig(48, 5, 288, 96, True, "hardswish", 2, scale), InvertedResidualConfig(96, 5, 576, 96, True, "hardswish", 1, scale), InvertedResidualConfig(96, 5, 576, 96, True, "hardswish", 1, scale), ] last_channel = _make_divisible(1024 * scale, 8) super().__init__( config, last_channel=last_channel, scale=scale, with_pool=with_pool, num_classes=num_classes) class MobileNetV3Large(MobileNetV3): """MobileNetV3 Large architecture model from `"Searching for MobileNetV3" `_. Args: scale (float, optional): Scale of channels in each layer. Default: 1.0. num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 1000. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. Examples: .. code-block:: python import paddle from paddle.vision.models import MobileNetV3Large # build model model = MobileNetV3Large(scale=1.0) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) """ def __init__(self, scale=1.0, num_classes=1000, with_pool=True): config = [ InvertedResidualConfig(16, 3, 16, 16, False, "relu", 1, scale), InvertedResidualConfig(16, 3, 64, 24, False, "relu", 2, scale), InvertedResidualConfig(24, 3, 72, 24, False, "relu", 1, scale), InvertedResidualConfig(24, 5, 72, 40, True, "relu", 2, scale), InvertedResidualConfig(40, 5, 120, 40, True, "relu", 1, scale), InvertedResidualConfig(40, 5, 120, 40, True, "relu", 1, scale), InvertedResidualConfig(40, 3, 240, 80, False, "hardswish", 2, scale), InvertedResidualConfig(80, 3, 200, 80, False, "hardswish", 1, scale), InvertedResidualConfig(80, 3, 184, 80, False, "hardswish", 1, scale), InvertedResidualConfig(80, 3, 184, 80, False, "hardswish", 1, scale), InvertedResidualConfig(80, 3, 480, 112, True, "hardswish", 1, scale), InvertedResidualConfig(112, 3, 672, 112, True, "hardswish", 1, scale), InvertedResidualConfig(112, 5, 672, 160, True, "hardswish", 2, scale), InvertedResidualConfig(160, 5, 960, 160, True, "hardswish", 1, scale), InvertedResidualConfig(160, 5, 960, 160, True, "hardswish", 1, scale), ] last_channel = _make_divisible(1280 * scale, 8) super().__init__( config, last_channel=last_channel, scale=scale, with_pool=with_pool, num_classes=num_classes) def _mobilenet_v3(arch, pretrained=False, scale=1.0, **kwargs): if arch == "mobilenet_v3_large": model = MobileNetV3Large(scale=scale, **kwargs) else: model = MobileNetV3Small(scale=scale, **kwargs) if pretrained: arch = "{}_x{}".format(arch, scale) assert ( arch in model_urls ), "{} model do not have a pretrained model now, you should set pretrained=False".format( arch) weight_path = get_weights_path_from_url(model_urls[arch][0], model_urls[arch][1]) param = paddle.load(weight_path) model.set_dict(param) return model def mobilenet_v3_small(pretrained=False, scale=1.0, **kwargs): """MobileNetV3 Small architecture model from `"Searching for MobileNetV3" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. scale (float, optional): Scale of channels in each layer. Default: 1.0. Examples: .. code-block:: python import paddle from paddle.vision.models import mobilenet_v3_small # build model model = mobilenet_v3_small() # build model and load imagenet pretrained weight # model = mobilenet_v3_small(pretrained=True) # build mobilenet v3 small model with scale=0.5 model = mobilenet_v3_small(scale=0.5) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) """ model = _mobilenet_v3( "mobilenet_v3_small", scale=scale, pretrained=pretrained, **kwargs) return model def mobilenet_v3_large(pretrained=False, scale=1.0, **kwargs): """MobileNetV3 Large architecture model from `"Searching for MobileNetV3" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. scale (float, optional): Scale of channels in each layer. Default: 1.0. Examples: .. code-block:: python import paddle from paddle.vision.models import mobilenet_v3_large # build model model = mobilenet_v3_large() # build model and load imagenet pretrained weight # model = mobilenet_v3_large(pretrained=True) # build mobilenet v3 large model with scale=0.5 model = mobilenet_v3_large(scale=0.5) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) """ model = _mobilenet_v3( "mobilenet_v3_large", scale=scale, pretrained=pretrained, **kwargs) return model