/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/vol2col.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using DDim = framework::DDim; // Define Op classes in .h file so that other conv transpose // operator implementations can reuse the code. class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override; }; class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override; }; class ConvTransposeOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override; }; class ConvTransposeOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override; }; template class GemmConvTransposeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); // The filter will be reshaped, so it should not be constant pointer Tensor filter = *context.Input("Filter"); Tensor* output = context.Output("Output"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); std::vector dilations = context.Attr>("dilations"); int groups = context.Attr("groups"); const int batch_size = static_cast(input->dims()[0]); // input_shape_vec: {n, c, h, w} or {n, c, d, h, w} std::vector input_shape_vec = framework::vectorize(input->dims()); // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w} std::vector filter_shape_vec = framework::vectorize(filter.dims()); // use col_shape in the im2col and col2im (or vol2col and col2vol) // calculation // col_shape_vec: {c/g, k_h, k_w, h, w} or {c/g, k_d, k_h, k_w, d, h, w} size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = output->dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2]; } DDim col_shape(framework::make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: (c/g * k_h * k_w, h * w) or (c/g * k_d * k_h * k_w, d * h * w) DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); Tensor col; col.mutable_data(col_shape, context.GetPlace()); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w) DDim output_shape = framework::slice_ddim(output->dims(), 1, output->dims().size()); // input matrix size: (m, h * w) or (m, d * h * w) DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]}; // filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w) DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]}; filter.Resize(filter_matrix_shape); output->mutable_data(context.GetPlace()); math::SetConstant set_zero; auto& dev_ctx = context.template device_context(); auto blas = math::GetBlas(dev_ctx); set_zero(dev_ctx, output, static_cast(0)); int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; math::Col2ImFunctor col2im; math::Col2VolFunctor col2vol; // convolution transpose: gemm + col2im or col2vol (similar to conv-backward // on input) for (int i = 0; i < batch_size; i++) { // batch with size (m, h * w) or (m, d * h * w) Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w) Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape); for (int g = 0; g < groups; g++) { Tensor in_slice = input_batch.Slice(g * in_step, (g + 1) * in_step); Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step); Tensor out_slice = output_batch.Slice(g * out_step, (g + 1) * out_step); // col_matrix = filter_slice * input_slice // of shape (c/g * k_h * k_w, h * w) // or (c/g * k_d * k_h * k_w, d * h * w) blas.MatMul(filter_slice, true, in_slice, false, static_cast(1.0), &col_matrix, static_cast(0.0)); if (data_dim == 2U) { // col2im: col_matrix -> dy // from (c/g * k_h * k_w, h * w) to (c/g, o_h, o_w) col2im(dev_ctx, col, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &out_slice); } else if (data_dim == 3U) { // col2vol: col_matrix -> dy // from (c/g * k_d * k_h * k_w, d * h * w) to (c/g, o_d, o_h, o_w) col2vol(dev_ctx, col, dilations, strides, paddings, &out_slice); } } } } }; template class GemmConvTransposeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); const Tensor* output_grad = context.Input(framework::GradVarName("Output")); // For filter, we do not use const pointer b/c we will do reshape, // but we should avoid modifying its value. Tensor filter = *context.Input("Filter"); Tensor* input_grad = context.Output(framework::GradVarName("Input")); Tensor* filter_grad = context.Output(framework::GradVarName("Filter")); if ((!input_grad) && (!filter_grad)) return; std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); std::vector dilations = context.Attr>("dilations"); int groups = context.Attr("groups"); const int batch_size = static_cast(input->dims()[0]); // input_shape_vec: {n, c, h, w} or {n, c, d, h, w} std::vector input_shape_vec = framework::vectorize(input->dims()); // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w} std::vector filter_shape_vec = framework::vectorize(filter.dims()); // use col_shape in the im2col and col2im (or vol2col and col2vol) // calculation // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w} size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = output_grad->dims()[1]; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2]; } DDim col_shape(framework::make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w) DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w) DDim output_shape = framework::slice_ddim(output_grad->dims(), 1, output_grad->dims().size()); // input matrix size: (m, h * w) or (m, d * h * w) DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]}; // filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w) DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0] / groups}; filter.Resize(filter_matrix_shape); int in_step = static_cast(input->dims()[1]) / groups; int col_step = static_cast(col_matrix_shape[0]) / groups; // convolution transpose grad on input: // im2col + gemm (similar to conv-forward) // input need to compute gradient auto& dev_ctx = context.template device_context(); auto blas = math::GetBlas(dev_ctx); if (input_grad || filter_grad) { Tensor col; col.mutable_data(col_shape, context.GetPlace()); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); Tensor filter_grad_; math::SetConstant set_zero; math::Im2ColFunctor im2col; math::Vol2ColFunctor vol2col; if (input_grad) { input_grad->mutable_data(context.GetPlace()); } if (filter_grad) { // filter size (m, c/g, k_h, k_w) filter_grad->mutable_data(context.GetPlace()); set_zero(dev_ctx, filter_grad, static_cast(0)); filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); } for (int i = 0; i < batch_size; i++) { // batch with size (c, o_h * o_w) Tensor output_grad_batch = output_grad->Slice(i, i + 1).Resize(output_shape); if (data_dim == 2U) { // im2col: dy -> col matrix // from (c, o_h, o_w) to (c * k_h * k_w, h * w) im2col(dev_ctx, output_grad_batch, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { // vol2col: dy -> col_matrix // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w) vol2col(dev_ctx, output_grad_batch, dilations, strides, paddings, &col); } if (input_grad) { // batch with size (m, h, w) Tensor input_grad_batch = input_grad->Slice(i, i + 1).Resize(input_matrix_shape); // gemm: dx = filter * dy // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w) // or // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m, // d, h, w) for (int g = 0; g < groups; g++) { Tensor input_grad_slice = input_grad_batch.Slice(g * in_step, (g + 1) * in_step); Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step); Tensor col_matrix_slice = col_matrix.Slice(g * col_step, (g + 1) * col_step); blas.MatMul(filter_slice, false, col_matrix_slice, false, static_cast(1.0), &input_grad_slice, static_cast(0.0)); } } if (filter_grad) { // input batch Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); // gemm: d_filter = x * dy^T // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w) // or // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d * // k_h * k_w) for (int g = 0; g < groups; g++) { Tensor in_batch_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); Tensor filter_grad_slice = filter_grad_.Slice(g * in_step, (g + 1) * in_step); Tensor col_matrix_slice = col_matrix.Slice(g * col_step, (g + 1) * col_step); blas.MatMul(in_batch_slice, false, col_matrix_slice, true, static_cast(1.0), &filter_grad_slice, static_cast(1.0)); } } } } } }; } // namespace operators } // namespace paddle