/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/im2col.h" #include #include "paddle/fluid/operators/math/im2col_cfo_cpu.h" template void testIm2col() { paddle::framework::Tensor input_tmp; paddle::framework::Tensor input; paddle::framework::Tensor output_cfo; paddle::framework::Tensor output_ocf; paddle::framework::Tensor output_tmp; /** * input = [0, 1, 2, * 3, 4, 5] * * output_cfo = [0, 1 * 1, 2 * 3, 4 * 4, 5] * * output_ocf = [0, 1, 3, 4 * 1, 2, 4, 5] * * col2im_cfo = [0, 2, 2 * 3, 4, 5] * * col2im_ocf = [0, 2, 2 * 3, 4, 5] */ int input_height = 2; int input_width = 3; int filter_size = 2; std::vector stride({1, 1}); // stride_y, stride_x std::vector padding( {0, 0, 0, 0}); // up_pad, left_pad, down_pad, right_pad std::vector dilation({1, 1}); // dilation_y, dilation_x int output_height = (input_height - filter_size + padding[0] + padding[1]) / stride[0] + 1; int output_width = (input_width - filter_size + padding[2] + padding[3]) / stride[1] + 1; float* input_ptr = input_tmp.mutable_data( {1, input_height, input_width}, paddle::platform::CPUPlace()); float arr[6] = {0, 1, 2, 3, 4, 5}; memcpy(input_ptr, arr, 6 * sizeof(float)); auto* place = new Place(); DeviceContext* context = new DeviceContext(*place); if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { TensorCopySync(input_tmp, *place, &input); } output_cfo.mutable_data( {1, filter_size, filter_size, output_height, output_width}, *place); output_ocf.mutable_data( {output_height, output_width, 1, filter_size, filter_size}, *place); // Im2Col paddle::operators::math::Im2ColFunctor< paddle::operators::math::ColFormat::kCFO, DeviceContext, float> im2col; paddle::operators::math::Im2ColFunctor< paddle::operators::math::ColFormat::kOCF, DeviceContext, float> im2col_ocf; im2col(*context, input, dilation, stride, padding, &output_cfo); im2col_ocf(*context, input, dilation, stride, padding, &output_ocf); float out_cfo_data[] = {0, 1, 1, 2, 3, 4, 4, 5}; float out_ocf_data[] = {0, 1, 3, 4, 1, 2, 4, 5}; float* out_cfo_ptr; if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output_cfo.data(); } else { TensorCopySync(output_cfo, paddle::platform::CPUPlace(), &output_tmp); out_cfo_ptr = output_tmp.data(); } for (int i = 0; i < 6; ++i) { EXPECT_EQ(out_cfo_ptr[i], out_cfo_data[i]); } float* out_ocf_ptr; if (paddle::platform::is_cpu_place(*place)) { out_ocf_ptr = output_ocf.data(); } else { TensorCopySync(output_ocf, paddle::platform::CPUPlace(), &output_tmp); out_ocf_ptr = output_tmp.data(); } for (int i = 0; i < 6; ++i) { EXPECT_EQ(out_ocf_ptr[i], out_ocf_data[i]); } // Col2Im: kCFO paddle::operators::math::Col2ImFunctor< paddle::operators::math::ColFormat::kCFO, DeviceContext, float> col2im; paddle::operators::math::Col2ImFunctor< paddle::operators::math::ColFormat::kOCF, DeviceContext, float> col2im_ocf; float col2im_data[] = {0, 2, 2, 3, 8, 5}; memset(input_ptr, 0, 6 * sizeof(float)); if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { TensorCopySync(input_tmp, *place, &input); } col2im(*context, output_cfo, dilation, stride, padding, &input); float* in_ptr; if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { TensorCopySync(input, paddle::platform::CPUPlace(), &input_tmp); in_ptr = input_tmp.data(); } for (int i = 0; i < 6; ++i) { EXPECT_EQ(in_ptr[i], col2im_data[i]); } // Col2Im: kOCF memset(input_ptr, 0, 6 * sizeof(float)); if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { TensorCopySync(input_tmp, *place, &input); } col2im_ocf(*context, output_ocf, dilation, stride, padding, &input); if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { TensorCopySync(input, paddle::platform::CPUPlace(), &input_tmp); in_ptr = input_tmp.data(); } for (int i = 0; i < 6; ++i) { EXPECT_EQ(in_ptr[i], col2im_data[i]); } delete place; delete context; } TEST(math, im2col) { testIm2col(); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) testIm2col(); #endif } #define PREPARE_IM2COL_CPU \ paddle::platform::CPUPlace place; \ paddle::platform::CPUDeviceContext context(place); \ paddle::framework::Tensor input; \ paddle::framework::Tensor out; \ paddle::framework::Tensor ref; \ std::vector padding({ph, pw}); \ std::vector stride({1, 1}); \ std::vector dilation({1, 1}); \ float* input_ptr = input.mutable_data({ic, ih, iw}, place); \ for (int i = 0; i < input.numel(); ++i) { \ input_ptr[i] = static_cast(i + 1); \ } \ int output_height = (ih - fh + padding[0] * 2) / stride[0] + 1; \ int output_width = (iw - fw + padding[1] * 2) / stride[1] + 1; \ out.mutable_data({ic, fh, fw, output_height, output_width}, place); \ ref.mutable_data({ic, fh, fw, output_height, output_width}, place); \ paddle::operators::math::Im2ColFunctor< \ paddle::operators::math::ColFormat::kCFO, \ paddle::platform::CPUDeviceContext, float> \ im2col void testIm2colCPU(int ic, int ih, int iw, int fh, int fw, int ph, int pw) { PREPARE_IM2COL_CPU; im2col(context, input, dilation, stride, padding, &out); paddle::operators::math::im2col_common(input, dilation, stride, padding, &ref); float* ref_data = ref.data(); float* out_data = out.data(); for (int i = 0; i < out.numel(); ++i) { EXPECT_EQ(out_data[i], ref_data[i]); } } void benchIm2col(int ic, int ih, int iw, int fh, int fw, int ph, int pw) { PREPARE_IM2COL_CPU; constexpr int repeat = 100; auto GetCurrentMs = []() -> double { struct timeval time; gettimeofday(&time, NULL); return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec; }; auto t1 = GetCurrentMs(); for (int i = 0; i < repeat; ++i) { im2col(context, input, dilation, stride, padding, &out); } auto t2 = GetCurrentMs(); for (int i = 0; i < repeat; ++i) { paddle::operators::math::im2col_common(input, dilation, stride, padding, &ref); } auto t3 = GetCurrentMs(); LOG(INFO) << "before: " << (t3 - t2) / repeat << ",after: " << (t2 - t1) / repeat << ",boost: " << ((t3 - t2) / (t2 - t1) - 1) * 100 << "%"; } TEST(math, im2col_cputest) { // padding_h == padding_w for (int p = 0; p < 4; ++p) { // width == height testIm2colCPU(/*ic*/ 2, /*ih*/ 5, /*iw*/ 5, /*fh*/ 4, /*fw*/ 4, /*ph*/ p, /*pw*/ p); testIm2colCPU(/*ic*/ 2, /*ih*/ 4, /*iw*/ 4, /*fh*/ 3, /*fw*/ 3, /*ph*/ p, /*pw*/ p); testIm2colCPU(/*ic*/ 2, /*ih*/ 4, /*iw*/ 4, /*fh*/ 2, /*fw*/ 2, /*ph*/ p, /*pw*/ p); // height != width testIm2colCPU(/*ic*/ 2, /*ih*/ 5, /*iw*/ 4, /*fh*/ 2, /*fw*/ 3, /*ph*/ p, /*pw*/ p); testIm2colCPU(/*ic*/ 2, /*ih*/ 5, /*iw*/ 4, /*fh*/ 1, /*fw*/ 3, /*ph*/ p, /*pw*/ p); testIm2colCPU(/*ic*/ 2, /*ih*/ 4, /*iw*/ 5, /*fh*/ 3, /*fw*/ 1, /*ph*/ p, /*pw*/ p); // filter == 1 testIm2colCPU(/*ic*/ 3, /*ih*/ 4, /*iw*/ 4, /*fh*/ 1, /*fw*/ 1, /*ph*/ p, /*pw*/ p); testIm2colCPU(/*ic*/ 3, /*ih*/ 3, /*iw*/ 4, /*fh*/ 1, /*fw*/ 1, /*ph*/ p, /*pw*/ p); } // padding_h != padding_w testIm2colCPU(/*ic*/ 2, /*ih*/ 4, /*iw*/ 4, /*fh*/ 2, /*fw*/ 3, /*ph*/ 1, /*pw*/ 2); // benchmark for (int p : {0, 1}) { for (int k : {1, 3, 5}) { LOG(INFO) << "padding == " << p << ", filter == " << k; benchIm2col(/*ic*/ 3, /*ih*/ 224, /*iw*/ 224, /*fh*/ k, /*fw*/ k, /*ph*/ p, /*pw*/ p); } } }