// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/selected_rows/hierarchical_sigmoid_grad_kernel.h" #include "paddle/fluid/framework/mixed_vector.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/cpu/hierarchical_sigmoid_grad.h" namespace phi { namespace sr { static std::vector PathToRows(const DenseTensor& path) { std::set rows; const int64_t* paths = path.data(); for (int64_t i = 0; i < path.numel(); ++i) { int64_t row = paths[i]; if (row < 0) { continue; } rows.emplace(row); } return std::vector(rows.begin(), rows.end()); } template void HierarchicalSigmoidGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& w, const DenseTensor& label, const DenseTensor& pre_out, const DenseTensor& out_grad, paddle::optional path, paddle::optional code, paddle::optional bias, int num_classes, bool remote_prefetch, int trainer_id, const std::vector& height_sections, const std::vector& epmap, const std::vector& table_names, bool is_sparse, DenseTensor* x_grad, SelectedRows* w_grad, DenseTensor* bias_grad) { PADDLE_ENFORCE_NOT_NULL( path.get_ptr(), errors::NotFound("Custom tree must be set for sparse mode!")); paddle::framework::Vector real_rows = PathToRows(*path); w_grad->set_rows(real_rows); // Build a map of id -> row_index to speed up finding the index of one id w_grad->set_height(w.dims()[0]); auto* w_grad_value = w_grad->mutable_value(); phi::DDim temp_dim(w.dims()); temp_dim[0] = real_rows.size(); w_grad_value->Resize(temp_dim); phi::HierarchicalSigmoidGradKernelImpl(ctx, x, w, label, pre_out, out_grad, path, code, bias, num_classes, remote_prefetch, trainer_id, height_sections, epmap, table_names, is_sparse, x_grad, w_grad_value, bias_grad, w_grad); } } // namespace sr } // namespace phi PD_REGISTER_KERNEL(hierarchical_sigmoid_grad_sr, CPU, ALL_LAYOUT, phi::sr::HierarchicalSigmoidGradKernel, float, double) {}