// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { using namespace framework; // NOLINT struct DataRecord { std::vector>> link_step_data_all; std::vector lod; std::vector> rnn_link_data; std::vector result_data; size_t num_samples; // total number of samples size_t batch_iter{0}; size_t batch_size{1}; DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= link_step_data_all.size()) { data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, link_step_data_all.begin() + batch_end); // Prepare LoDs data.lod.push_back(0); CHECK(!data.link_step_data_all.empty()) << "empty"; for (size_t j = 0; j < data.link_step_data_all.size(); j++) { for (const auto &d : data.link_step_data_all[j]) { data.rnn_link_data.push_back(d); // calculate lod data.lod.push_back(data.lod.back() + 11); } } } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ':', &data); if (num_lines % 2) { // feature std::vector feature_data; split(data[1], ' ', &feature_data); std::vector> link_step_data; int feature_count = 1; std::vector feature; for (auto &step_data : feature_data) { std::vector tmp; split_to_float(step_data, ',', &tmp); feature.insert(feature.end(), tmp.begin(), tmp.end()); if (feature_count % 11 == 0) { // each sample has 11 features link_step_data.push_back(feature); feature.clear(); } feature_count++; } link_step_data_all.push_back(std::move(link_step_data)); } else { // result std::vector tmp; split_to_float(data[1], ',', &tmp); result_data.insert(result_data.end(), tmp.begin(), tmp.end()); } } num_samples = num_lines / 2; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor feed_tensor; feed_tensor.name = "feed"; auto one_batch = data->NextBatch(); int token_size = one_batch.rnn_link_data.size(); // each token has 11 features, each feature's dim is 54. std::vector rnn_link_data_shape({token_size * 11, 54}); feed_tensor.shape = rnn_link_data_shape; feed_tensor.lod.assign({one_batch.lod}); feed_tensor.dtype = PaddleDType::FLOAT32; TensorAssignData(&feed_tensor, one_batch.rnn_link_data); // Set inputs. input_slots->assign({feed_tensor}); } void SetConfig(AnalysisConfig *cfg) { cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->param_file = FLAGS_infer_model + "/param"; cfg->use_gpu = false; cfg->device = 0; cfg->specify_input_name = true; cfg->enable_ir_optim = true; } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. TEST(Analyzer_rnn2, profile) { AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { // the first inference result DataRecord data(FLAGS_infer_data, FLAGS_batch_size); PADDLE_ENFORCE_GT(outputs.size(), 0); size_t size = GetSize(outputs[0]); PADDLE_ENFORCE_GT(size, 0); float *result = static_cast(outputs[0].data.data()); for (size_t i = 0; i < size; i++) { EXPECT_NEAR(result[i], data.result_data[i], 1e-3); } } } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_rnn2, compare) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis(cfg, input_slots_all); } } // namespace inference } // namespace paddle