# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import os import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.incubate.hapi.metrics import * from paddle.incubate.hapi.utils import to_list def accuracy(pred, label, topk=(1, )): maxk = max(topk) pred = np.argsort(pred)[:, ::-1][:, :maxk] correct = (pred == np.repeat(label, maxk, 1)) batch_size = label.shape[0] res = [] for k in topk: correct_k = correct[:, :k].sum() res.append(correct_k / batch_size) return res def convert_to_one_hot(y, C): oh = np.random.choice(np.arange(C), C, replace=False).astype('float32') / C oh = np.tile(oh[np.newaxis, :], (y.shape[0], 1)) for i in range(y.shape[0]): oh[i, int(y[i])] = 1. return oh class TestAccuracyDynamic(unittest.TestCase): def setUp(self): self.topk = (1, ) self.class_num = 5 self.sample_num = 1000 self.name = None def random_pred_label(self): label = np.random.randint(0, self.class_num, (self.sample_num, 1)).astype('int64') pred = np.random.randint(0, self.class_num, (self.sample_num, 1)).astype('int32') pred_one_hot = convert_to_one_hot(pred, self.class_num) pred_one_hot = pred_one_hot.astype('float32') return label, pred_one_hot def test_main(self): with fluid.dygraph.guard(fluid.CPUPlace()): acc = Accuracy(topk=self.topk, name=self.name) for _ in range(10): label, pred = self.random_pred_label() label_var = to_variable(label) pred_var = to_variable(pred) state = to_list(acc.add_metric_op(pred_var, label_var)) acc.update(* [s.numpy() for s in state]) res_m = acc.accumulate() res_f = accuracy(pred, label, self.topk) assert np.all(np.isclose(np.array(res_m, dtype='float64'), np.array(res_f, dtype='float64'), rtol=1e-3)), \ "Accuracy precision error: {} != {}".format(res_m, res_f) acc.reset() assert np.sum(acc.total) == 0 assert np.sum(acc.count) == 0 class TestAccuracyDynamicMultiTopk(TestAccuracyDynamic): def setUp(self): self.topk = (1, 5) self.class_num = 10 self.sample_num = 1000 self.name = "accuracy" class TestAccuracyStatic(TestAccuracyDynamic): def test_main(self): main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): pred = fluid.data( name='pred', shape=[None, self.class_num], dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') acc = Accuracy(topk=self.topk, name=self.name) state = acc.add_metric_op(pred, label) exe = fluid.Executor(fluid.CPUPlace()) compiled_main_prog = fluid.CompiledProgram(main_prog) for _ in range(10): label, pred = self.random_pred_label() state_ret = exe.run(compiled_main_prog, feed={'pred': pred, 'label': label}, fetch_list=[s.name for s in to_list(state)], return_numpy=True) acc.update(*state_ret) res_m = acc.accumulate() res_f = accuracy(pred, label, self.topk) assert np.all(np.isclose(np.array(res_m, dtype='float64'), np.array(res_f, dtype='float64'), rtol=1e-3)), \ "Accuracy precision error: {} != {}".format(res_m, res_f) acc.reset() assert np.sum(acc.total) == 0 assert np.sum(acc.count) == 0 class TestAccuracyStaticMultiTopk(TestAccuracyStatic): def setUp(self): self.topk = (1, 5) self.class_num = 10 self.sample_num = 1000 self.name = "accuracy" if __name__ == '__main__': unittest.main()