/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/float16.h" #include "pybind11/numpy.h" #include "pybind11/pybind11.h" namespace paddle { namespace pybind { namespace details { template struct CastToPyBufferImpl; template struct CastToPyBufferImpl { pybind11::buffer_info operator()(const framework::Tensor &tensor) { PADDLE_THROW("This type of tensor cannot be expose to Python"); return pybind11::buffer_info(); } }; template struct CastToPyBufferImpl { using CUR_TYPE = typename std::tuple_element>::type; pybind11::buffer_info operator()(const framework::Tensor &tensor) { if (std::type_index(typeid(CUR_TYPE)) == tensor.type()) { auto dim_vec = framework::vectorize(tensor.dims()); std::vector dims_outside; std::vector strides; dims_outside.resize(dim_vec.size()); strides.resize(dim_vec.size()); size_t prod = 1; for (size_t i = dim_vec.size(); i != 0; --i) { dims_outside[i - 1] = (size_t)dim_vec[i - 1]; strides[i - 1] = sizeof(CUR_TYPE) * prod; prod *= dims_outside[i - 1]; } framework::Tensor dst_tensor; bool is_gpu = paddle::platform::is_gpu_place(tensor.place()); if (is_gpu) { #ifdef PADDLE_WITH_CUDA auto *src_ptr = static_cast(tensor.data()); auto *dst_ptr = static_cast(dst_tensor.mutable_data( tensor.dims(), platform::CPUPlace())); paddle::platform::GpuMemcpySync(dst_ptr, src_ptr, sizeof(CUR_TYPE) * tensor.numel(), cudaMemcpyDeviceToHost); #else PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } else if (paddle::platform::is_cpu_place(tensor.place())) { dst_tensor = tensor; } std::string dtype = std::type_index(typeid(CUR_TYPE)) == std::type_index(typeid(platform::float16)) ? std::string("e") // np.dtype('e') == np.float16 : pybind11::format_descriptor::format(); if (is_gpu) { // manually construct a py_buffer if is_gpu since gpu data is copied // into CPU. // TODO(yy): Is these following code memleak? Py_buffer *py_buffer = reinterpret_cast(malloc(sizeof(Py_buffer))); py_buffer->format = strdup(dtype.c_str()); py_buffer->itemsize = sizeof(CUR_TYPE); py_buffer->ndim = framework::arity(dst_tensor.dims()); py_buffer->len = tensor.numel(); py_buffer->strides = reinterpret_cast( malloc(sizeof(Py_ssize_t) * strides.size())); for (size_t i = 0; i < strides.size(); ++i) { py_buffer->strides[i] = strides[i]; } py_buffer->shape = reinterpret_cast( malloc(sizeof(Py_ssize_t) * tensor.dims().size())); for (int i = 0; i < tensor.dims().size(); ++i) { py_buffer->shape[i] = tensor.dims()[i]; } py_buffer->readonly = false; py_buffer->suboffsets = nullptr; py_buffer->obj = nullptr; py_buffer->buf = malloc(static_cast(py_buffer->len * py_buffer->itemsize)); memcpy(py_buffer->buf, dst_tensor.data(), static_cast(py_buffer->len * py_buffer->itemsize)); return pybind11::buffer_info(py_buffer, true); } else { return pybind11::buffer_info( dst_tensor.data(), sizeof(CUR_TYPE), dtype, (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides); } } else { constexpr bool less = I + 1 < std::tuple_size>::value; return CastToPyBufferImpl()(tensor); } } }; } // namespace details inline pybind11::buffer_info CastToPyBuffer(const framework::Tensor &tensor) { auto buffer_info = details::CastToPyBufferImpl()(tensor); return buffer_info; } template T TensorGetElement(const framework::Tensor &self, size_t offset) { if (platform::is_cpu_place(self.place())) { return self.data()[offset]; } else { std::shared_ptr dst(new framework::Tensor); framework::TensorCopySync(self, platform::CPUPlace(), dst.get()); return dst->data()[offset]; } } // TODO(dzhwinter) : fix the redundant Tensor allocate and free template void TensorSetElement(framework::Tensor *self, size_t offset, T elem) { if (platform::is_gpu_place(self->place())) { framework::Tensor dst; framework::TensorCopySync(*self, platform::CPUPlace(), &dst); dst.mutable_data(platform::CPUPlace())[offset] = elem; framework::TensorCopySync(dst, self->place(), self); } else if (platform::is_cpu_place(self->place())) { self->mutable_data(self->place())[offset] = elem; } } template void PyCPUTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CPUPlace place) { std::vector dims; dims.reserve(array.ndim()); for (size_t i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(T) * array.size()); } template <> // This following specialization maps uint16_t in the parameter type to // platform::float16. inline void PyCPUTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CPUPlace place) { std::vector dims; dims.reserve(array.ndim()); for (int i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size()); } #ifdef PADDLE_WITH_CUDA template void PyCUDATensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CUDAPlace place) { std::vector dims; dims.reserve(array.ndim()); for (size_t i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); } template <> // This following specialization maps uint16_t in the parameter type to // platform::float16. inline void PyCUDATensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CUDAPlace place) { std::vector dims; dims.reserve(array.ndim()); for (size_t i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(uint16_t) * array.size(), cudaMemcpyHostToDevice); } template void PyCUDAPinnedTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, const paddle::platform::CUDAPinnedPlace &place) { std::vector dims; dims.reserve(array.ndim()); for (size_t i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(T) * array.size()); } template <> // This following specialization maps uint16_t in the parameter type to // platform::float16. inline void PyCUDAPinnedTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, const paddle::platform::CUDAPinnedPlace &place) { std::vector dims; dims.reserve(array.ndim()); for (size_t i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size()); } #endif } // namespace pybind } // namespace paddle