import paddle.v2.framework.core as core import collections import numpy as np import copy __all__ = ['Block', 'Variable', 'Program', 'Operator'] class Variable(object): def __init__(self, block, name=None, shape=None, dtype=None, lod_level=None, **kwargs): self.block = block if name is None: name = Variable._unique_var_name_() try: self.desc = self.block.desc.var(name) is_new_var = False except core.EnforceNotMet: self.desc = self.block.desc.get_or_create(name) is_new_var = True if shape is not None: if is_new_var: self.desc.set_shape(shape) else: old_shape = self.shape shape = tuple(shape) if shape != old_shape: raise ValueError( "Variable {0} has been created before. the previous " "shape is {1}; the new shape is {2}. They are not " "matched.".format(self.name, old_shape, shape)) if dtype is not None: if not isinstance(dtype, core.DataType): dtype = Variable._convert_np_dtype_to_dtype_(dtype) if is_new_var: self.desc.set_data_type(dtype) else: old_dtype = self.data_type() if dtype != old_shape: raise ValueError("Variable {0} has been created before. " "The previous data type is {1}; the new " "data type is {2}. They are not " "matched.".format(self.name, old_dtype, dtype)) if lod_level is not None: if is_new_var: self.desc.set_lod_level(lod_level) else: if lod_level != self.lod_level: raise ValueError("Variable {0} has been created before. " "The previous lod_level is {1}; the new " "lod_level is {2}. They are not " "matched".format(self.name, self.lod_level, lod_level)) self.block.vars[name] = self self.op = None @property def name(self): return self.desc.name() @property def shape(self): # convert to tuple, make it as same as numpy API. return tuple(self.desc.shape()) @property def data_type(self): return self.desc.data_type() @property def lod_level(self): return self.desc.lod_level() @staticmethod def _unique_var_name_(): uid = core.unique_integer() # unique during whole process. return "_generated_var_%d" % uid @staticmethod def _convert_np_dtype_to_dtype_(np_dtype): dtype = np.dtype(np_dtype) if dtype == np.float32: return core.DataType.FP32 elif dtype == np.float64: return core.DataType.FP64 elif dtype == np.float16: return core.DataType.FP16 elif dtype == np.int32: return core.DataType.INT32 elif dtype == np.int16: return core.DataType.INT16 elif dtype == np.int64: return core.DataType.INT64 elif dtype == np.bool: return core.DataType.BOOL else: raise ValueError("Not supported numpy dtype " + str(dtype)) class Operator(object): def __init__(self, block, desc, type=None, inputs=None, outputs=None, attrs=None): self.block = block self.desc = desc if type is not None: # TODO. pass if inputs is not None: # TODO pass if outputs is not None: # TODO pass if attrs is not None: # TODO pass # TODO: Getters class Block(object): def __init__(self, program, idx): self.desc = program.desc.block(idx) self.vars = dict() # var_name --> var self.ops = collections.deque() # operator list self.program = program @property def parent_idx(self): return self.desc.parent @property def idx(self): return self.desc.id def create_var(self, *args, **kwargs): return Variable(self, *args, **kwargs) def create_parameter(self, *args, **kwargs): global_block = self.program.global_block() return Parameter(global_block, *args, **kwargs) def append_op(self, *args, **kwargs): op_desc = self.desc.append_op() op = Operator(self, op_desc, *args, **kwargs) self.ops.append(op) return op def prepend_op(self, *args, **kwargs): op_desc = self.desc.prepend_op() op = Operator(self, op_desc, *args, **kwargs) self.ops.appendleft(op) return op class Program(object): @classmethod def instance(cls): # From https://stackoverflow.com/questions/8212053 # Making Program as a Singleton class. if not hasattr(cls, '_instance'): cls._instance = cls() return cls._instance def __init__(self): assert not hasattr(self.__class__, '_instance'), 'Do not call constructor directly!' self.desc = core.ProgramDesc.instance() self.blocks = [Block(self, 0)] self.current_block_idx = 0 def global_block(self): return self.blocks[0] def current_block(self): return self.blocks[self.current_block_idx] def create_block(self): new_block_idx = len(self.blocks) self.desc.append_block(self.current_block().desc) self.current_block_idx = new_block_idx self.blocks.append(Block(self, self.current_block_idx)) return self.current_block() def rollback(self): self.current_block_idx = self.current_block().parent_idx class Parameter(Variable): def __init__(self, block, shape, dtype, **kwargs): if shape is None or dtype is None: raise ValueError("Parameter must set shape and dtype") if len(shape) == 0: raise ValueError("Parameter shape cannot be empty") for each in shape: if each < 0: raise ValueError("Parameter shape should not be related with " "batch-size") Variable.__init__(self, block, shape=shape, dtype=dtype, **kwargs) self.trainable = kwargs.get('trainable', True) self.init_attr = kwargs.get('initialize_attr', { 'type': 'uniform_random', 'min': -1.0, 'max': 1.0 }) self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0}) self._append_initialize_ops_() def _append_initialize_ops_(self): attr = copy.deepcopy(self.init_attr) op_type = attr.pop('type', None) block = self.block assert isinstance(block, Block) shape = self.shape attr['dims'] = shape attr['data_type'] = int(self.data_type) op = block.prepend_op( type=op_type, inputs=None, outputs={'Out': [self]}, attrs=attr) self.op = op # program is a global instance. g_program = Program.instance()