# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import argparse import time import cProfile import os import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler SEED = 1 DTYPE = "float32" # random seed must set before configuring the network. # fluid.default_startup_program().random_seed = SEED def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu") conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu") # TODO(dzhwinter) : refine the initializer and random seed settting SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale))) return predict def get_model(args, is_train, main_prog, startup_prog): # NOTE: mnist is small, we don't implement data sharding yet. opt = None data_file_handle = None with fluid.program_guard(main_prog, startup_prog): if args.use_reader_op: filelist = [ os.path.join(args.data_path, f) for f in os.listdir(args.data_path) ] data_file_handle = fluid.layers.open_files( filenames=filelist, shapes=[[-1, 1, 28, 28], (-1, 1)], lod_levels=[0, 0], dtypes=["float32", "int64"], thread_num=1, pass_num=1) data_file = fluid.layers.double_buffer( fluid.layers.batch( data_file_handle, batch_size=args.batch_size)) with fluid.unique_name.guard(): if args.use_reader_op: input, label = fluid.layers.read_file(data_file) else: images = fluid.layers.data( name='pixel', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data( name='label', shape=[1], dtype='int64') predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_acc = fluid.layers.accuracy(input=predict, label=label) # Optimization if is_train: opt = fluid.optimizer.AdamOptimizer( learning_rate=0.001, beta1=0.9, beta2=0.999) opt.minimize(avg_cost) if args.memory_optimize: fluid.memory_optimize(main_prog) # Reader if is_train: reader = paddle.dataset.mnist.train() else: reader = paddle.dataset.mnist.test() batched_reader = paddle.batch( reader, batch_size=args.batch_size * args.gpus) return avg_cost, opt, [batch_acc], batched_reader, data_file_handle