# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core import paddle.fluid as fluid import six from fake_reader import fake_imdb_reader paddle.enable_static() def bow_net(data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2): """ BOW net This model is from https://github.com/PaddlePaddle/models: fluid/PaddleNLP/text_classification/nets.py """ emb = fluid.layers.embedding( input=data, is_sparse=True, size=[dict_dim, emb_dim]) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) return avg_cost class TestGradientClip(unittest.TestCase): def setUp(self): self.word_dict_len = 5147 self.BATCH_SIZE = 2 reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100) self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE) self.clip_gradient = lambda x: None self.init() def init(self): pass def get_places(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) return places def check_clip_result(self, out, out_clip): pass def check_gradient_clip(self, place, dtype='float32'): prog = fluid.Program() startup_program = fluid.Program() with fluid.program_guard( main_program=prog, startup_program=startup_program): image = fluid.data(name="a", shape=[-1, 784], dtype='float32') label = fluid.data(name="b", shape=[-1, 1], dtype='int64') if dtype != 'float32': image_cast = paddle.cast(image, dtype) hidden = fluid.layers.fc(input=image_cast, size=32, act='relu') else: hidden = fluid.layers.fc(input=image, size=32, act='relu') predict = fluid.layers.fc(input=hidden, size=10, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) prog_clip = prog.clone() avg_cost_clip = prog_clip.block(0).var(avg_cost.name) p_g = fluid.backward.append_backward(loss=avg_cost) p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip) p_g = sorted(p_g, key=lambda x: x[0].name) p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name) with fluid.program_guard( main_program=prog_clip, startup_program=startup_program): p_g_clip = self.clip_gradient(p_g_clip) grad_list = [elem[1] for elem in p_g] grad_clip_list = [elem[1] for elem in p_g_clip] train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[image, label], place=place) exe.run(startup_program) data = next(train_reader()) out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list) out_clip = exe.run(prog_clip, feed=feeder.feed(data), fetch_list=grad_clip_list) self.check_clip_result(out, out_clip) def check_sparse_gradient_clip(self, place): prog = fluid.Program() startup_program = fluid.Program() with fluid.program_guard( main_program=prog, startup_program=startup_program): data = fluid.data( name="words", shape=[-1, 1], dtype="int64", lod_level=1) label = fluid.data(name="label", shape=[-1, 1], dtype="int64") cost = bow_net(data, label, self.word_dict_len) self.backward_and_optimize(cost) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[data, label], place=place) exe.run(startup_program) data = next(self.train_data()) val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0] self.assertEqual((1, ), val.shape) self.assertFalse(np.isnan(val)) def backward_and_optimize(self, cost): pass class TestGradientClipByGlobalNorm(TestGradientClip): def init(self): self.clip_norm = 0.2 def check_clip_result(self, out, out_clip): global_norm = 0 for v in out: global_norm += np.sum(np.square(v)) global_norm = np.sqrt(global_norm) scale = self.clip_norm / np.maximum(self.clip_norm, global_norm) res = [] for i in range(len(out)): out[i] = scale * out[i] for u, v in zip(out, out_clip): self.assertTrue( np.allclose( a=u, b=v, rtol=1e-5, atol=1e-8), "gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}". format(u, v, u - v)) # test whether the ouput is right when use 'set_gradient_clip' def test_old_gradient_clip(self): def func(params_grads): clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm) fluid.clip.set_gradient_clip(clip) return fluid.clip.append_gradient_clip_ops(params_grads) self.clip_gradient = func self.check_gradient_clip(fluid.CPUPlace()) # test whether the ouput is right when use grad_clip def test_new_gradient_clip(self): def func(params_grads): clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm) return clip(params_grads) self.clip_gradient = func self.check_gradient_clip(fluid.CPUPlace()) # test whether the ouput is right when use grad_clip under float64 def test_new_gradient_clip_fp64(self): def func(params_grads): clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm) return clip(params_grads) self.clip_gradient = func self.check_gradient_clip(fluid.CPUPlace(), "float64") # invoke 'set_gradient_clip' in a wrong order def test_wrong_API_order(self): def backward_func(cost): clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0) fluid.clip.set_gradient_clip(clip) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01, grad_clip=clip) # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective sgd_optimizer.minimize(cost) # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective fluid.clip.set_gradient_clip(clip) self.backward_and_optimize = backward_func for place in self.get_places(): self.check_sparse_gradient_clip(place) # raise typeError def test_tpyeError(self): # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class with self.assertRaises(TypeError): sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1, grad_clip="test") # if grad is None or not need clip def test_none_grad_fp32(self): ops = self._test_none_grad_helper("float32") self.assertListEqual(ops, [ 'squared_l2_norm', 'squared_l2_norm', 'sum', 'sum', 'sqrt', 'fill_constant', 'elementwise_max', 'elementwise_div', 'elementwise_mul', 'elementwise_mul' ]) def test_none_grad_fp16(self): ops = self._test_none_grad_helper("float16") self.assertListEqual(ops, [ 'square', 'reduce_sum', 'square', 'reduce_sum', 'sum', 'cast', 'sum', 'sqrt', 'fill_constant', 'elementwise_max', 'elementwise_div', 'cast', 'elementwise_mul', 'cast', 'elementwise_mul' ]) def _test_none_grad_helper(self, dtype): prog = fluid.Program() startup_program = fluid.Program() with fluid.program_guard( main_program=prog, startup_program=startup_program): clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm) x = fluid.default_main_program().global_block().create_parameter( name="x", shape=[2, 3], dtype=dtype) y = fluid.default_main_program().global_block().create_parameter( name="y", shape=[2, 3], dtype=dtype) # (x, None) should not be returned params_grads = [(x, None), (x, y), (y, x)] params_grads = clip(params_grads) self.assertTrue( len(params_grads) == 2, "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!" ) ops = [op.type for op in x.block.ops] return ops class TestGradientClipByNorm(TestGradientClip): def init(self): self.clip_norm = 0.2 def check_clip_result(self, out, out_clip): for u, v in zip(out, out_clip): norm = np.sqrt(np.sum(np.power(u, 2))) scale = self.clip_norm / np.maximum(self.clip_norm, norm) u = u * scale self.assertTrue( np.allclose( a=u, b=v, rtol=1e-5, atol=1e-8), "gradient clip by norm has wrong results!") # test whether the ouput is right when use grad_clip def test_gradient_clip(self): def func(params_grads): clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm) return clip(params_grads) self.clip_gradient = func self.check_gradient_clip(fluid.CPUPlace()) # if grad is None or not need clip def test_none_grad(self): clip = fluid.clip.GradientClipByNorm(self.clip_norm) x = fluid.default_main_program().global_block().create_parameter( name="x", shape=[2, 3], dtype="float32", need_clip=False) y = fluid.default_main_program().global_block().create_parameter( name="y", shape=[2, 3], dtype="float32", need_clip=False) # (x, None) should not be returned params_grads = [(x, None), (x, y)] params_grads = clip(params_grads) self.assertTrue( len(clip(params_grads)) == 1, "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!" ) self.assertTrue( params_grads[0][1].name == 'y', "ClipGradByNorm: grad should not be clipped when filtered out!") class TestGradientClipByValue(TestGradientClip): def init(self): self.max = 0.2 self.min = 0.1 def check_clip_result(self, out, out_clip): for i, v in enumerate(out): out[i] = np.clip(v, self.min, self.max) for u, v in zip(out, out_clip): u = np.clip(u, self.min, self.max) self.assertTrue( np.allclose( a=u, b=v, rtol=1e-6, atol=1e-8), "gradient clip by value has wrong results!") # test whether the ouput is right when use grad_clip def test_gradient_clip(self): def func(params_grads): clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min) return clip(params_grads) self.clip_gradient = func self.check_gradient_clip(fluid.CPUPlace()) # if grad is None or not need clip def test_none_grad(self): clip = fluid.clip.GradientClipByValue(self.max, self.min) x = fluid.default_main_program().global_block().create_parameter( name="x", shape=[2, 3], dtype="float32", need_clip=False) y = fluid.default_main_program().global_block().create_parameter( name="y", shape=[2, 3], dtype="float32", need_clip=False) # (x, None) should not be returned params_grads = [(x, None), (x, y)] params_grads = clip(params_grads) self.assertTrue( len(clip(params_grads)) == 1, "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!" ) self.assertTrue( params_grads[0][1].name == 'y', "ClipGradByValue: grad should not be clipped when filtered out!") class TestDygraphGradientClip(unittest.TestCase): def test_gradient_clip(self): with fluid.dygraph.guard(): linear = fluid.dygraph.Linear(5, 5) inputs = fluid.layers.uniform_random( [16, 5], min=-10, max=10).astype('float32') out = linear(fluid.dygraph.to_variable(inputs)) loss = fluid.layers.reduce_mean(out) loss.backward() sgd_optimizer = fluid.optimizer.SGD( learning_rate=0.0, parameter_list=linear.parameters(), grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1)) self.check_clip_result(loss, sgd_optimizer) def check_clip_result(self, loss, optimizer): pass class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip): def setUp(self): self.clip_norm = 0.8 self.clip1 = fluid.clip.GradientClipByGlobalNorm( clip_norm=self.clip_norm) self.clip2 = fluid.clip.GradientClipByGlobalNorm( clip_norm=self.clip_norm) def check_clip_result(self, loss, optimizer): # if grad is None x = fluid.dygraph.to_variable( np.array([2, 3]).astype("float32"), name="x") y = fluid.dygraph.to_variable( np.array([3, 4]).astype("float32"), name="y") assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2 # get params and grads from network opt, params_grads = optimizer.minimize(loss) _, grads = zip(*params_grads) params_grads = self.clip2(params_grads) _, grads_clip = zip(*params_grads) global_norm = 0 for u in grads: u = u.numpy() global_norm += np.sum(np.power(u, 2)) global_norm = np.sqrt(global_norm) global_norm_clip = 0 for v in grads_clip: v = v.numpy() global_norm_clip += np.sum(np.power(v, 2)) global_norm_clip = np.sqrt(global_norm_clip) a = np.minimum(global_norm, self.clip_norm) b = global_norm_clip self.assertTrue( np.isclose( a=a, b=b, rtol=1e-6, atol=1e-8), "gradient clip by global norm has wrong results, expetcd:%f, but recieved:%f" % (a, b)) class TestDygraphGradientClipByNorm(TestDygraphGradientClip): def setUp(self): self.clip_norm = 0.8 self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm) def check_clip_result(self, loss, optimizer): # if grad is None x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32")) assert len(self.clip([(x, None)])) == 0 # get params and grads from network self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)]) opt, params_grads = optimizer.minimize(loss) _, grads = zip(*params_grads) params_grads = self.clip(params_grads) _, grads_clip = zip(*params_grads) for u, v in zip(grads, grads_clip): u = u.numpy() v = v.numpy() a = np.sqrt(np.sum(np.power(u, 2))) a = np.minimum(a, self.clip_norm) b = np.sqrt(np.sum(np.power(v, 2))) self.assertTrue( np.isclose( a=a, b=b, rtol=1e-6, atol=1e-8), "gradient clip by norm has wrong results, expetcd:%f, but recieved:%f" % (a, b)) class TestDygraphGradientClipByValue(TestDygraphGradientClip): def setUp(self): self.max = 0.2 self.min = 0.1 self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min) def check_clip_result(self, loss, optimizer): # if grad is None x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32")) assert len(self.clip([(x, None)])) == 0 # get params and grads from network opt, params_grads = optimizer.minimize(loss) _, grads = zip(*params_grads) params_grads = self.clip(params_grads) _, grads_clip = zip(*params_grads) for u, v in zip(grads, grads_clip): u = np.clip(u.numpy(), self.min, self.max) v = v.numpy() self.assertTrue( np.allclose( a=u, b=v, rtol=1e-6, atol=1e-8), "gradient clip by value has wrong results!") if __name__ == '__main__': unittest.main()