import paddle.v2.framework.core as core from paddle.v2.framework.op import Operator import numpy import paddle.v2 as paddle BATCH_SIZE = 100 scope = core.Scope() place = core.CPUPlace() dev_ctx = core.DeviceContext.create(place) # init_net = core.Net.create() forward_network = core.Net.create() # should be init after forward_op is constructed # backward_net = core.Operator.backward(forward_net, set()) backward_net = None optimize_net = core.Net.create() def atom_id(): id = 0 while True: yield id id += 1 uniq_id = atom_id().next def data_layer(name, dims): var = scope.new_var(name) tensor = var.get_tensor() tensor.set_dims(dims) # 1 is batch size holder. return name def feed_data(name, data): assert isinstance(data, numpy.ndarray) tensor = scope.find_var(name).get_tensor() tensor.set_dims(data.shape) if data.dtype == numpy.dtype('int32'): tensor.alloc_int(place) elif data.dtype == numpy.dtype('float32'): tensor.alloc_float(place) else: raise ValueError("data type not supported") tensor.set(data, place) def grad_var_name(var_name): return var_name + "@GRAD" def sgd_optimizer(net, param_name, learning_rate=0.01): grad_name = grad_var_name(param_name) optimize_op = Operator( "sgd", param=param_name, grad=grad_name, param_out=param_name, learning_rate=learning_rate) net.add_op(optimize_op) # should use operator and add these to the init_network def init_param(param_name, dims): print param_name var = scope.new_var(param_name) tensor = var.get_tensor() tensor.set_dims(dims) data = numpy.random.uniform( low=0.0, high=1.0, size=tensor.shape()).astype("float32") tensor.set(data, place) # fc_layer def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): """ Add a fc layer to net :param input: input variable name. :type input: str :param size: fully connected layer size. :param act: activation name :param param: parameter attribute, used for initialize parameters. :param bias: bias attribute. False will not have a bias. :param name: the name of fc layer. If not set, model will generate a readable name :return: output variable name. """ if name is None: name = 'fc_%d' % uniq_id() if not isinstance(name, str): raise ValueError("name should be string") input_dims = scope.find_var(input).get_tensor().get_dims() w_name = param or name + ".w" init_param(param_name=w_name, dims=[input_dims[1], size]) sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01) pre_activation = name + ".mul.out" scope.new_var(pre_activation) mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation) net.add_op(mul_op) # create bias variable if needed if bias: bias_name = name + ".b" init_param(param_name=bias_name, dims=[size]) sgd_optimizer( net=optimize_net, param_name=bias_name, learning_rate=0.01) bias_out = name + ".rowwise_add.out" scope.new_var(bias_out) rowwise_add_op = Operator( "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out) net.add_op(rowwise_add_op) pre_activation = bias_out activation_op = Operator(act, X=pre_activation, Y=name) net.add_op(activation_op) scope.new_var(name) net.infer_shape(scope) return name def cross_entropy_layer(net, input, label): cost_name = 'cross_entropy_%d' % uniq_id() cross_entropy_op = Operator( "onehot_cross_entropy", X=input, label=label, Y=cost_name) net.add_op(cross_entropy_op) scope.new_var(cost_name) net.infer_shape(scope) return cost_name def get_backward_net(forward_net): net = core.Operator.backward(forward_net, set()) for input in net.inputs()["all"]: var = scope.new_var(input) var.get_tensor() for output in net.outputs()["all"]: var = scope.new_var(output) var.get_tensor() return net def print_inputs_outputs(op): print("===============" + op.type() + "==============") print("***inputs:***") for input in op.inputs()["all"]: print input, scope.find_var(input).get_tensor().get_dims() print("***outputs:***") for output in op.outputs()["all"]: print output, scope.find_var(output).get_tensor().get_dims() print("") print("") images = data_layer(name='pixel', dims=[BATCH_SIZE, 784]) label = data_layer(name='label', dims=[BATCH_SIZE]) fc = fc_layer(net=forward_network, input=images, size=10, act="softmax") cost = cross_entropy_layer(net=forward_network, input=fc, label=label) forward_network.complete_add_op(True) print(forward_network) backward_net = get_backward_net(forward_network) print(backward_net) optimize_net.complete_add_op(True) print(optimize_net) reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=BATCH_SIZE) PASS_NUM = 1000 for pass_id in range(PASS_NUM): print("===========forward==========") # feed_data("pixel", numpy.random.random((BATCH_SIZE, 784)).astype('float32')) # feed_data("label", numpy.ones(BATCH_SIZE).astype("int32")) data = reader().next() image = numpy.array(map(lambda x: x[0], data)).astype("float32") label = numpy.array(map(lambda x: x[1], data)).astype("int32") feed_data("pixel", image) feed_data("label", label) forward_network.infer_shape(scope) print_inputs_outputs(forward_network) # print(numpy.array(scope.find_var("label").get_tensor())) forward_network.run(scope, dev_ctx) # print(numpy.array(scope.find_var("fc_0").get_tensor())) print("===========backward==========") cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor()) print(cost_data.sum() / len(cost_data)) cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor() cost_grad.set_dims(cost_data.shape) cost_grad.alloc_float(place) cost_grad.set(cost_data, place) backward_net.infer_shape(scope) print_inputs_outputs(backward_net) backward_net.run(scope, dev_ctx) print("===========optimize_net==========") print_inputs_outputs(optimize_net) optimize_net.run(scope, dev_ctx)