# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.fluid as fluid import paddle.fluid.core as core import unittest import numpy import numbers class TestTensor(unittest.TestCase): def test_int_tensor(self): scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() tensor._set_dims([1000, 784]) tensor._alloc_int(place) tensor_array = numpy.array(tensor) self.assertEqual((1000, 784), tensor_array.shape) tensor_array[3, 9] = 1 tensor_array[19, 11] = 2 tensor.set(tensor_array, place) tensor_array_2 = numpy.array(tensor) self.assertEqual(1, tensor_array_2[3, 9]) self.assertEqual(2, tensor_array_2[19, 11]) def test_float_tensor(self): scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() tensor._set_dims([1000, 784]) tensor._alloc_float(place) tensor_array = numpy.array(tensor) self.assertEqual((1000, 784), tensor_array.shape) tensor_array[3, 9] = 1.0 tensor_array[19, 11] = 2.0 tensor.set(tensor_array, place) tensor_array_2 = numpy.array(tensor) self.assertAlmostEqual(1.0, tensor_array_2[3, 9]) self.assertAlmostEqual(2.0, tensor_array_2[19, 11]) def test_int8_tensor(self): scope = core.Scope() var = scope.var("int8_tensor") cpu_tensor = var.get_tensor() tensor_array = numpy.random.randint( -127, high=128, size=[100, 200], dtype=numpy.int8) place = core.CPUPlace() cpu_tensor.set(tensor_array, place) cpu_tensor_array_2 = numpy.array(cpu_tensor) self.assertAlmostEqual(cpu_tensor_array_2.all(), tensor_array.all()) if core.is_compiled_with_cuda(): cuda_tensor = var.get_tensor() tensor_array = numpy.random.randint( -127, high=128, size=[100, 200], dtype=numpy.int8) place = core.CUDAPlace(0) cuda_tensor.set(tensor_array, place) cuda_tensor_array_2 = numpy.array(cuda_tensor) self.assertAlmostEqual(cuda_tensor_array_2.all(), tensor_array.all()) def test_int_lod_tensor(self): place = core.CPUPlace() scope = core.Scope() var_lod = scope.var("test_lod_tensor") lod_tensor = var_lod.get_tensor() lod_tensor._set_dims([4, 4, 6]) lod_tensor._alloc_int(place) array = numpy.array(lod_tensor) array[0, 0, 0] = 3 array[3, 3, 5] = 10 lod_tensor.set(array, place) lod_tensor.set_recursive_sequence_lengths([[2, 2]]) lod_v = numpy.array(lod_tensor) self.assertTrue(numpy.alltrue(array == lod_v)) lod = lod_tensor.recursive_sequence_lengths() self.assertEqual(2, lod[0][0]) self.assertEqual(2, lod[0][1]) def test_float_lod_tensor(self): place = core.CPUPlace() scope = core.Scope() var_lod = scope.var("test_lod_tensor") lod_tensor = var_lod.get_tensor() lod_tensor._set_dims([5, 2, 3, 4]) lod_tensor._alloc_float(place) tensor_array = numpy.array(lod_tensor) self.assertEqual((5, 2, 3, 4), tensor_array.shape) tensor_array[0, 0, 0, 0] = 1.0 tensor_array[0, 0, 0, 1] = 2.0 lod_tensor.set(tensor_array, place) lod_v = numpy.array(lod_tensor) self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) self.assertEqual(len(lod_tensor.recursive_sequence_lengths()), 0) lod_py = [[2, 1], [1, 2, 2]] lod_tensor.set_recursive_sequence_lengths(lod_py) lod = lod_tensor.recursive_sequence_lengths() self.assertListEqual(lod_py, lod) def test_lod_tensor_init(self): place = core.CPUPlace() lod_py = [[2, 1], [1, 2, 2]] lod_tensor = core.LoDTensor() lod_tensor._set_dims([5, 2, 3, 4]) lod_tensor.set_recursive_sequence_lengths(lod_py) lod_tensor._alloc_float(place) tensor_array = numpy.array(lod_tensor) tensor_array[0, 0, 0, 0] = 1.0 tensor_array[0, 0, 0, 1] = 2.0 lod_tensor.set(tensor_array, place) lod_v = numpy.array(lod_tensor) self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths()) def test_lod_tensor_gpu_init(self): if not core.is_compiled_with_cuda(): return place = core.CUDAPlace(0) lod_py = [[2, 1], [1, 2, 2]] lod_tensor = core.LoDTensor() lod_tensor._set_dims([5, 2, 3, 4]) lod_tensor.set_recursive_sequence_lengths(lod_py) lod_tensor._alloc_float(place) tensor_array = numpy.array(lod_tensor) tensor_array[0, 0, 0, 0] = 1.0 tensor_array[0, 0, 0, 1] = 2.0 lod_tensor.set(tensor_array, place) lod_v = numpy.array(lod_tensor) self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths()) def test_empty_tensor(self): place = core.CPUPlace() scope = core.Scope() var = scope.var("test_tensor") tensor = var.get_tensor() tensor._set_dims([0, 1]) tensor._alloc_float(place) tensor_array = numpy.array(tensor) self.assertEqual((0, 1), tensor_array.shape) if core.is_compiled_with_cuda(): gpu_place = core.CUDAPlace(0) tensor._alloc_float(gpu_place) tensor_array = numpy.array(tensor) self.assertEqual((0, 1), tensor_array.shape) def run_sliece_tensor(self, place): tensor = fluid.Tensor() shape = [3, 3, 3] tensor._set_dims(shape) tensor_array = numpy.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]) tensor.set(tensor_array, place) n1 = tensor[1] t1 = tensor_array[1] self.assertTrue((numpy.array(n1) == numpy.array(t1)).all()) n2 = tensor[1:] t2 = tensor_array[1:] self.assertTrue((numpy.array(n2) == numpy.array(t2)).all()) n3 = tensor[0:2:] t3 = tensor_array[0:2:] self.assertTrue((numpy.array(n3) == numpy.array(t3)).all()) n4 = tensor[2::-2] t4 = tensor_array[2::-2] self.assertTrue((numpy.array(n4) == numpy.array(t4)).all()) n5 = tensor[2::-2][0] t5 = tensor_array[2::-2][0] self.assertTrue((numpy.array(n5) == numpy.array(t5)).all()) n6 = tensor[2:-1:-1] t6 = tensor_array[2:-1:-1] self.assertTrue((numpy.array(n6) == numpy.array(t6)).all()) n7 = tensor[0:, 0:] t7 = tensor_array[0:, 0:] self.assertTrue((numpy.array(n7) == numpy.array(t7)).all()) n8 = tensor[0::1, 0::-1, 2:] t8 = tensor_array[0::1, 0::-1, 2:] self.assertTrue((numpy.array(n8) == numpy.array(t8)).all()) def test_sliece_tensor(self): # run cpu first place = core.CPUPlace() self.run_sliece_tensor(place) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) self.run_sliece_tensor(place) def test_print_tensor(self): scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() tensor._set_dims([10, 10]) tensor._alloc_int(place) tensor_array = numpy.array(tensor) self.assertEqual((10, 10), tensor_array.shape) tensor_array[0, 0] = 1 tensor_array[2, 2] = 2 tensor.set(tensor_array, place) print(tensor) self.assertTrue(isinstance(str(tensor), str)) if core.is_compiled_with_cuda(): tensor.set(tensor_array, core.CUDAPlace(0)) print(tensor) self.assertTrue(isinstance(str(tensor), str)) def test_tensor_poiter(self): place = core.CPUPlace() scope = core.Scope() var = scope.var("test_tensor") place = core.CPUPlace() tensor = var.get_tensor() dtype = core.VarDesc.VarType.FP32 self.assertTrue( isinstance(tensor._mutable_data(place, dtype), numbers.Integral)) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) self.assertTrue( isinstance( tensor._mutable_data(place, dtype), numbers.Integral)) place = core.CUDAPinnedPlace() self.assertTrue( isinstance( tensor._mutable_data(place, dtype), numbers.Integral)) places = fluid.cuda_pinned_places() self.assertTrue( isinstance( tensor._mutable_data(places[0], dtype), numbers.Integral)) if __name__ == '__main__': unittest.main()