# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import os def data_generator(input_shape=(1, 32, 32), label_range=9): while True: img = np.random.random(size=input_shape).astype(np.float32) label = np.array(np.random.randint(0, label_range)).astype("int64") yield img, label class TestDistributedReader(unittest.TestCase): def test_distributed_reader(self): batch_size = 32 trainer_num = 4 os.environ['PADDLE_TRAINER_ID'] = str(0) os.environ['PADDLE_TRAINERS_NUM'] = str(trainer_num) reader = fluid.contrib.reader.distributed_sampler( data_generator, batch_size=batch_size) data = next(reader()) assert len(data) == batch_size // trainer_num,\ "sub batch size should be {}, but the returned size is {}".format( batch_size // trainer_num, len(data)) os.unsetenv('PADDLE_TRAINER_ID') os.unsetenv('PADDLE_TRAINERS_NUM') if __name__ == '__main__': unittest.main()