// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include "paddle/fluid/inference/tensorrt/helper.h" #include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_utils.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/profiler.h" DECLARE_bool(profile); namespace paddle { namespace inference { namespace tensorrt { namespace plugin { class PluginTensorRT; typedef std::function PluginDeserializeFunc; typedef std::function PluginConstructFunc; class PluginTensorRT : public nvinfer1::IPluginExt { public: PluginTensorRT() {} // It was used for TensorRT deserialization. // It should not be called by users. PluginTensorRT(const void* serialized_data, size_t length) {} virtual ~PluginTensorRT() {} nvinfer1::Dims const& getInputDims(int index) const { return input_dims_.at(index); } size_t getMaxBatchSize() const { return max_batch_size_; } nvinfer1::DataType getDataType() const { return data_type_; } nvinfer1::PluginFormat getDataFormat() const { return data_format_; } virtual const char* getPluginVersion() const { return "1"; } void AddInput(nvinfer1::ITensor* input) { inputs_.push_back(input); } std::vector& GetInputs() { return inputs_; } virtual nvinfer1::IPluginExt* clone() const = 0; virtual const char* getPluginType() const = 0; // Following functions are inherit from nvinfer1::IPluginExt // Get the number of outputs from the layer int getNbOutputs() const { return 1; } // Get the dimension of an output tensor virtual nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* input_dims, int num_inputs) = 0; // Find the workspace size required by the layer size_t getWorkspaceSize(int) const override { return 0; } // Initialize the layer for execution. // This is called when the engine is created. int initialize() override { return 0; } // Shutdown the layer. This is called when the engine is destroyed void terminate() override {} // Execute the layer virtual int enqueue(int batch_size, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) = 0; // Find the size of the serialization buffer required virtual size_t getSerializationSize() = 0; // Serialize the layer config to buffer. // TensorRT will call this func to serialize the configuration of TensorRT // engine. It should not be called by users. virtual void serialize(void* buffer) = 0; // Check format support. The default is FLOAT32 and NCHW. bool supportsFormat(nvinfer1::DataType type, nvinfer1::PluginFormat format) const override; // Configure the layer void configureWithFormat(const nvinfer1::Dims* input_dims, int num_inputs, const nvinfer1::Dims* output_dims, int num_outputs, nvinfer1::DataType type, nvinfer1::PluginFormat format, int max_batch_size) override; protected: // Deserialize input_dims, max_batch_size, data_type, data_format void deserializeBase(void const*& serial_data, // NOLINT size_t& serial_length); // NOLINT size_t getBaseSerializationSize(); // Serialize input_dims, max_batch_size, data_type, data_format void serializeBase(void*& buffer); // NOLINT std::vector input_dims_; size_t max_batch_size_; nvinfer1::DataType data_type_; nvinfer1::PluginFormat data_format_; std::vector inputs_; }; #if IS_TRT_VERSION_GE(6000) class DynamicPluginTensorRT : public nvinfer1::IPluginV2DynamicExt { public: DynamicPluginTensorRT() {} DynamicPluginTensorRT(const void* serialized_data, size_t length) {} // The Func in IPluginExt or IpluginExtV2 virtual const char* getPluginVersion() const { return "1"; } virtual const char* getPluginType() const = 0; int getNbOutputs() const { return 1; } int initialize() override { return 0; } void terminate() override{}; virtual size_t getSerializationSize() const = 0; virtual void serialize(void* buffer) const = 0; // The Func in IPluginV2 nvinfer1::IPluginV2DynamicExt* clone() const = 0; virtual nvinfer1::DimsExprs getOutputDimensions( int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs, nvinfer1::IExprBuilder& expr_builder) = 0; // NOLINT virtual bool supportsFormatCombination( int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs, int nb_outputs) = 0; virtual void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nb_inputs, const nvinfer1::DynamicPluginTensorDesc* out, int nb_outputs) = 0; size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, int nb_inputs, const nvinfer1::PluginTensorDesc* outputs, int nb_outputs) const override { return 0; } virtual int enqueue(const nvinfer1::PluginTensorDesc* input_desc, const nvinfer1::PluginTensorDesc* output_desc, const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) = 0; virtual nvinfer1::DataType getOutputDataType( int index, const nvinfer1::DataType* input_types, int nb_inputs) const = 0; void setPluginNamespace(const char* plugin_namespace) override { name_space_ = plugin_namespace; } const char* getPluginNamespace() const override { return name_space_.c_str(); } virtual void destroy() = 0; protected: void deserializeBase(void const*& serial_data, // NOLINT size_t& serial_length); // NOLINT size_t getBaseSerializationSize() const; void serializeBase(void*& buffer) const; // NOLINT private: std::string name_space_; std::string plugin_base_; }; template class TrtPluginRegistrarV2 { public: TrtPluginRegistrarV2() { static auto func_ptr = getPluginRegistry(); if (func_ptr != nullptr) { func_ptr->registerCreator(creator, ""); } } private: T creator; }; #define REGISTER_TRT_PLUGIN_V2(name) \ static paddle::inference::tensorrt::plugin::TrtPluginRegistrarV2 \ plugin_registrar_##name {} #endif } // namespace plugin } // namespace tensorrt } // namespace inference } // namespace paddle