# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core import sys sys.path.append("..") from op_test import OpTest from paddle.fluid import Program, program_guard import paddle.fluid.dygraph as dg import paddle.static as static from numpy.random import random as rand paddle.enable_static() class TestConjOp(OpTest): def setUp(self): self.op_type = "conj" self.python_api = paddle.tensor.conj self.init_dtype_type() self.init_input_output() self.init_grad_input_output() def init_dtype_type(self): self.dtype = np.complex64 def init_input_output(self): x = (np.random.random((12, 14)) + 1j * np.random.random( (12, 14))).astype(self.dtype) out = np.conj(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def init_grad_input_output(self): self.grad_out = (np.ones((12, 14)) + 1j * np.ones( (12, 14))).astype(self.dtype) self.grad_in = np.conj(self.grad_out) def test_check_output(self): self.check_output(check_eager=True) def test_check_grad_normal(self): self.check_grad( ['X'], 'Out', user_defined_grads=[self.grad_in], user_defined_grad_outputs=[self.grad_out], check_eager=True) class TestComplexConjOp(unittest.TestCase): def setUp(self): self._dtypes = ["float32", "float64"] self._places = [paddle.CPUPlace()] if paddle.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) def test_conj_api(self): for dtype in self._dtypes: input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand( [2, 20, 2, 3]).astype(dtype) for place in self._places: with dg.guard(place): var_x = paddle.to_tensor(input) result = paddle.conj(var_x).numpy() target = np.conj(input) self.assertTrue(np.array_equal(result, target)) def test_conj_operator(self): for dtype in self._dtypes: input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand( [2, 20, 2, 3]).astype(dtype) for place in self._places: with dg.guard(place): var_x = paddle.to_tensor(input) result = var_x.conj().numpy() target = np.conj(input) self.assertTrue(np.array_equal(result, target)) def test_conj_static_mode(self): def init_input_output(dtype): input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand( [2, 20, 2, 3]).astype(dtype) return {'x': input}, np.conj(input) for dtype in self._dtypes: input_dict, np_res = init_input_output(dtype) for place in self._places: with static.program_guard(static.Program()): x_dtype = np.complex64 if dtype == "float32" else np.complex128 x = static.data( name="x", shape=[2, 20, 2, 3], dtype=x_dtype) out = paddle.conj(x) exe = static.Executor(place) out_value = exe.run(feed=input_dict, fetch_list=[out.name]) self.assertTrue(np.array_equal(np_res, out_value[0])) def test_conj_api_real_number(self): for dtype in self._dtypes: input = rand([2, 20, 2, 3]).astype(dtype) for place in self._places: with dg.guard(place): var_x = paddle.to_tensor(input) result = paddle.conj(var_x).numpy() target = np.conj(input) self.assertTrue(np.array_equal(result, target)) if __name__ == "__main__": unittest.main()