/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/sample_logits_op.h" #include "paddle/fluid/operators/math/sample_prob.h" namespace paddle { namespace operators { class SampleLogitsOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("Logits", "(Tensor, default: Tensor), The unscaled log probabilities " "which is a 2-D tensor with shape [N x K]. N is the batch_size, " "and K is the class number."); AddInput("Label", "(Tensor) The ground truth which is a 2-D tensor. Label is a " "Tensor with shape [N x NT], where NT is the number of" "true labels for each example."); AddInput( "CustomSamples", "(Tensor, default: Tensor), A 2-D tensor with shaoe [N x " "S+NT]." "The customized sample labels with true labels at first. This tensor" "is only use_custom_samples is true.") .AsDispensable(); AddInput( "CustomProbabilities", "(Tensor, default: Tensor), A 2-D tensor with shaoe [N x S+NT]." "The customized sample probabilities with true labels at first. This " "tensor is only use_custom_samples is true.") .AsDispensable(); AddOutput( "Samples", "(Tensor, default: Tensor), A 2-D tensor with shape [N x " "S+NT]." "The outputs value of sampler by given the true label, where S is the " "number of negative sample for each example. So Samples includes NT " "true" "labels and S negative labels for each example. This will be used in" "backward calculation.") .AsIntermediate(); AddOutput( "Probabilities", "(Tensor, default: Tensor), A 2-D tensor with shape [N x " "S+NT]." "The outputs value of progabilites of samples by given the true label, " "where S is the " "number of negative sample for each example. So Samples includes NT " "true" "labels and S negative labels for each example.") .AsIntermediate(); AddOutput("SampledLogits", "(Tensor, default: Tensor), A 2-D tensor with shape" "[N x S+NT]. The outputs value of sampled softmax, which will be" "used in backward calculation.") .AsIntermediate(); AddOutput("SampledLabel", "(Tensor, default: Tensor), A 2-D tensor. The cross " "entropy loss with shape [N x NT]."); AddAttr( "use_custom_samples", "An indicator whether to use custom samples with probabilities, if True" "the operator will use custom samples and custom probabilities" "otherwise, the operator will generate them by itself.") .SetDefault(false); AddAttr( "uniq", "An indicator whether to sample non-repetitive negtive labels, if True" "the operator will sample negtive labels without replacement." "otherwise, the operator will sample negtive labels with replacement.") .SetDefault(false); AddAttr( "remove_accidental_hits", "An indicator whether to remove accidental hits when samples hits true" "labels, the removal is implemented by subtracting the corresponding" "logits by float_max to subpress their softmax to be zero.") .SetDefault(true); AddAttr("num_samples", "The number of negative samples."); AddAttr("seed", "Random seed for generating samples").SetDefault(0); AddComment(R"DOC( TODO(chenfeiyu): Write documentation for this Operator. Sampled Softmax With Cross Entropy Operator. Cross entropy loss with sampled softmax is used as the output layer extensively. This operator computes the softmax normalized values for each row of the input tensor, after which cross-entropy loss is computed. This provides a more numerically stable gradient. Because this operator performs a softmax on logits internally, it expects unscaled logits. This operator should not be used with the output of softmax operator since that would produce incorrect results. When the attribute soft_label is set false, this operators expects mutually exclusive hard labels, each sample in a batch is in exactly one class with a probability of 1.0. Each sample in the batch will have a single label. The equation is as follows: 1) Hard label (one-hot label, so every sample has exactly one class) $$Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1,..., K$$ 2) Soft label (each sample can have a distribution over all classes) $$Loss_j = -\sum_{i=0}^{K}\text{Label}_i \left(\text{Logit}_i - \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K$$ )DOC"); } }; class SampleLogitsOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Logits"), "Input(Logits) should be not null."); PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); PADDLE_ENFORCE(ctx->HasOutput("Samples"), "Output(Samples) should be not null."); PADDLE_ENFORCE(ctx->HasOutput("Probabilities"), "Output(Probabilities) should be not null."); PADDLE_ENFORCE(ctx->HasOutput("SampledLogits"), "Output(SampledLogits) should be not null."); PADDLE_ENFORCE(ctx->HasOutput("SampledLabel"), "Output(SampledLabel) should be not null."); auto logits_dims = ctx->GetInputDim("Logits"); auto labels_dims = ctx->GetInputDim("Label"); PADDLE_ENFORCE_EQ( logits_dims.size(), 2UL, "The logits of softmax_with_cross_entropy should be a 2-D tensor."); PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL, "The labels should be a 2-D tensor."); const int num_samples = ctx->Attrs().Get("num_samples"); const int num_sampled_classes = labels_dims[1] + num_samples; ctx->SetOutputDim("Samples", {logits_dims[0], num_sampled_classes}); ctx->SetOutputDim("Probabilities", {logits_dims[0], num_sampled_classes}); ctx->SetOutputDim("SampledLogits", {logits_dims[0], num_sampled_classes}); ctx->SetOutputDim("SampledLabel", {logits_dims[0], labels_dims[1]}); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Logits")); framework::OpKernelType kt = framework::OpKernelType(data_type, ctx.device_context()); // kt.place_ = platform::CPUPlace(); return kt; } }; // UNDERSTAND: InferShape for Grad class SampleLogitsOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Logits"), "Input(Logits) should not be null."); PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); PADDLE_ENFORCE(ctx->HasInput("Samples"), "Input(Samples) should be not null."); PADDLE_ENFORCE(ctx->HasInput("SampledLogits"), "Input(SampledLogits) should be not null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("SampledLogits")), "Input(SampledLogits@Grad) should not be null."); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")), "Output(Logits@Grad) should be not null."); auto logit_dims = ctx->GetInputDim("Logits"); auto label_dims = ctx->GetInputDim("Label"); PADDLE_ENFORCE_EQ(label_dims.size(), 2UL, "The label should be a 2-D tensor."); PADDLE_ENFORCE_EQ(logit_dims.size(), 2UL, "The logits should be a 2-D tensor."); ctx->SetOutputDim(framework::GradVarName("Logits"), ctx->GetInputDim("Logits")); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto data_type = framework::GetDataTypeOfVar( ctx.InputVar(framework::GradVarName("SampledLogits"))); framework::OpKernelType kt = framework::OpKernelType(data_type, ctx.device_context()); // kt.place_ = platform::CPUPlace(); return kt; } }; // UNDERSTAND: what's the rule for making a GradMaker TODO class SampleLogitsGradMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { auto* grad_op = new framework::OpDesc(); grad_op->SetType("sample_logits_grad"); grad_op->SetInput("Logits", Input("Logits")); grad_op->SetInput("Label", Input("Label")); grad_op->SetInput("Samples", Output("Samples")); grad_op->SetInput("SampledLogits", Output("SampledLogits")); grad_op->SetInput(framework::GradVarName("SampledLogits"), OutputGrad("SampledLogits")); grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits")); grad_op->SetAttrMap(Attrs()); return std::unique_ptr(grad_op); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(sample_logits, ops::SampleLogitsOp, ops::SampleLogitsOpMaker, ops::SampleLogitsGradMaker); REGISTER_OPERATOR(sample_logits_grad, ops::SampleLogitsOpGrad); REGISTER_OP_CPU_KERNEL(sample_logits, ops::SampleLogitsKernel, ops::SampleLogitsKernel); REGISTER_OP_CPU_KERNEL(sample_logits_grad, ops::SampleLogitsGradKernel, ops::SampleLogitsGradKernel);