# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TestCases for Monitor """ from __future__ import print_function import paddle.fluid as fluid import paddle.fluid.core as core import numpy as np import os import unittest class TestDatasetWithStat(unittest.TestCase): """ TestCases for Dataset. """ def setUp(self): self.use_data_loader = False self.epoch_num = 10 self.drop_last = False def test_dataset_run_with_stat(self): with open("test_in_memory_dataset_run_a.txt", "w") as f: data = "1 1 2 3 3 4 5 5 5 5 1 1\n" data += "1 2 2 3 4 4 6 6 6 6 1 2\n" data += "1 3 2 3 5 4 7 7 7 7 1 3\n" f.write(data) with open("test_in_memory_dataset_run_b.txt", "w") as f: data = "1 4 2 3 3 4 5 5 5 5 1 4\n" data += "1 5 2 3 4 4 6 6 6 6 1 5\n" data += "1 6 2 3 5 4 7 7 7 7 1 6\n" data += "1 7 2 3 6 4 8 8 8 8 1 7\n" f.write(data) slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = fluid.layers.data( name=slot, shape=[1], dtype="int64", lod_level=1) slots_vars.append(var) dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_batch_size(32) dataset.set_thread(3) dataset.set_filelist([ "test_in_memory_dataset_run_a.txt", "test_in_memory_dataset_run_b.txt" ]) dataset.set_pipe_command("cat") dataset.set_use_var(slots_vars) dataset.load_into_memory() dataset.set_fea_eval(1, True) dataset.slots_shuffle(["slot1"]) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) if self.use_data_loader: data_loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places(), self.drop_last) for i in range(self.epoch_num): for data in data_loader(): exe.run(fluid.default_main_program(), feed=data) else: for i in range(self.epoch_num): try: exe.train_from_dataset(fluid.default_main_program(), dataset) except Exception as e: self.assertTrue(False) int_stat = core.get_int_stats() # total 56 keys print(int_stat["STAT_total_feasign_num_in_mem"]) os.remove("./test_in_memory_dataset_run_a.txt") os.remove("./test_in_memory_dataset_run_b.txt") if __name__ == '__main__': unittest.main()