# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import numbers import warnings import numpy as np import paddle from paddle.distributed import ParallelEnv from paddle.utils import try_import from .progressbar import ProgressBar __all__ = [ 'Callback', 'ProgBarLogger', 'ModelCheckpoint', 'VisualDL', 'LRScheduler', 'EarlyStopping', 'ReduceLROnPlateau' ] def config_callbacks(callbacks=None, model=None, batch_size=None, epochs=None, steps=None, log_freq=2, verbose=2, save_freq=1, save_dir=None, metrics=None, mode='train'): cbks = callbacks or [] cbks = cbks if isinstance(cbks, (list, tuple)) else [cbks] if not any(isinstance(k, ProgBarLogger) for k in cbks) and verbose: cbks = [ProgBarLogger(log_freq, verbose=verbose)] + cbks if not any(isinstance(k, ModelCheckpoint) for k in cbks): cbks = cbks + [ModelCheckpoint(save_freq, save_dir)] for k in cbks: if isinstance(k, EarlyStopping): k.save_dir = save_dir if not any(isinstance(k, LRScheduler) for k in cbks): cbks = cbks + [LRScheduler()] cbk_list = CallbackList(cbks) cbk_list.set_model(model) metrics = metrics or [] if mode != 'test' else [] params = { 'batch_size': batch_size, 'epochs': epochs, 'steps': steps, 'verbose': verbose, 'metrics': metrics, } cbk_list.set_params(params) return cbk_list class CallbackList(object): def __init__(self, callbacks=None): # copy self.callbacks = [c for c in callbacks] self.params = {} self.model = None def append(self, callback): self.callbacks.append(callback) def __iter__(self): return iter(self.callbacks) def set_params(self, params): for c in self.callbacks: c.set_params(params) def set_model(self, model): for c in self.callbacks: c.set_model(model) def _call(self, name, *args): for c in self.callbacks: func = getattr(c, name) func(*args) def _check_mode(self, mode): assert mode in ['train', 'eval', 'predict'], \ 'mode should be train, eval or predict' def on_begin(self, mode, logs=None): self._check_mode(mode) name = 'on_{}_begin'.format(mode) self._call(name, logs) def on_end(self, mode, logs=None): self._check_mode(mode) name = 'on_{}_end'.format(mode) self._call(name, logs) def on_epoch_begin(self, epoch=None, logs=None): self._call('on_epoch_begin', epoch, logs) def on_epoch_end(self, epoch=None, logs=None): self._call('on_epoch_end', epoch, logs) def on_batch_begin(self, mode, step=None, logs=None): self._check_mode(mode) name = 'on_{}_batch_begin'.format(mode) self._call(name, step, logs) def on_batch_end(self, mode, step=None, logs=None): self._check_mode(mode) name = 'on_{}_batch_end'.format(mode) self._call(name, step, logs) class Callback(object): """ Base class used to build new callbacks. Examples: .. code-block:: python import paddle # build a simple model checkpoint callback class ModelCheckpoint(paddle.callbacks.Callback): def __init__(self, save_freq=1, save_dir=None): self.save_freq = save_freq self.save_dir = save_dir def on_epoch_end(self, epoch, logs=None): if self.model is not None and epoch % self.save_freq == 0: path = '{}/{}'.format(self.save_dir, epoch) print('save checkpoint at {}'.format(path)) self.model.save(path) """ def __init__(self): self.model = None self.params = {} def set_params(self, params): """ Set parameters, which is dict. The keys contain: - 'batch_size': an integer. Number of samples per batch. - 'epochs': an integer. Number of epochs. - 'steps': an integer. Number of steps of one epoch. - 'verbose': an integer. Verbose mode is 0, 1 or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch. - 'metrics': a list of str. Names of metrics, including 'loss' and the names of paddle.metric.Metric. """ self.params = params def set_model(self, model): """model is instance of paddle.Model. """ self.model = model def on_train_begin(self, logs=None): """Called at the start of training. Args: logs (dict): The logs is a dict or None. """ def on_train_end(self, logs=None): """Called at the end of training. Args: logs (dict): The logs is a dict or None. The keys of logs passed by paddle.Model contains 'loss', metric names and `batch_size`. """ def on_eval_begin(self, logs=None): """Called at the start of evaluation. Args: logs (dict): The logs is a dict or None. The keys of logs passed by paddle.Model contains 'steps' and 'metrics', The `steps` is number of total steps of validation dataset. The `metrics` is a list of str including 'loss' and the names of paddle.metric.Metric. """ def on_eval_end(self, logs=None): """Called at the end of evaluation. Args: logs (dict): The logs is a dict or None. The `logs` passed by paddle.Model is a dict contains 'loss', metrics and 'batch_size' of last batch of validation dataset. """ def on_predict_begin(self, logs=None): """Called at the beginning of predict. Args: logs (dict): The logs is a dict or None. """ def on_predict_end(self, logs=None): """Called at the end of predict. Args: logs (dict): The logs is a dict or None. """ def on_epoch_begin(self, epoch, logs=None): """Called at the beginning of each epoch. Args: epoch (int): The index of epoch. logs (dict): The logs is a dict or None. The `logs` passed by paddle.Model is None. """ def on_epoch_end(self, epoch, logs=None): """Called at the end of each epoch. Args: epoch (int): The index of epoch. logs (dict): The logs is a dict or None. The `logs` passed by paddle.Model is a dict, contains 'loss', metrics and 'batch_size' of last batch. """ def on_train_batch_begin(self, step, logs=None): """Called at the beginning of each batch in training. Args: step (int): The index of step (or iteration). logs (dict): The logs is a dict or None. The `logs` passed by paddle.Model is empty. """ def on_train_batch_end(self, step, logs=None): """Called at the end of each batch in training. Args: step (int): The index of step (or iteration). logs (dict): The logs is a dict or None. The `logs` passed by paddle.Model is a dict, contains 'loss', metrics and 'batch_size' of current batch. """ def on_eval_batch_begin(self, step, logs=None): """Called at the beginning of each batch in evaluation. Args: step (int): The index of step (or iteration). logs (dict): The logs is a dict or None. The `logs` passed by paddle.Model is empty. """ def on_eval_batch_end(self, step, logs=None): """Called at the end of each batch in evaluation. Args: step (int): The index of step (or iteration). logs (dict): The logs is a dict or None. The `logs` passed by paddle.Model is a dict, contains 'loss', metrics and 'batch_size' of current batch. """ def on_predict_batch_begin(self, step, logs=None): """Called at the beginning of each batch in predict. Args: step (int): The index of step (or iteration). logs (dict): The logs is a dict or None. """ def on_predict_batch_end(self, step, logs=None): """Called at the end of each batch in predict. Args: step (int): The index of step (or iteration). logs (dict): The logs is a dict or None. """ class ProgBarLogger(Callback): """ Logger callback function. Args: log_freq (int): The frequency, in number of steps, the logs such as loss, metrics are printed. Default: 1. verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch, 3 = 2 + time counter, such as average reader cost, samples per second. Default: 2. Examples: .. code-block:: python import paddle import paddle.vision.transforms as T from paddle.vision.datasets import MNIST from paddle.static import InputSpec inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] labels = [InputSpec([None, 1], 'int64', 'label')] transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = MNIST(mode='train', transform=transform) lenet = paddle.vision.LeNet() model = paddle.Model(lenet, inputs, labels) optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters()) model.prepare(optimizer=optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) callback = paddle.callbacks.ProgBarLogger(log_freq=10) model.fit(train_dataset, batch_size=64, callbacks=callback) """ def __init__(self, log_freq=1, verbose=2): self.epochs = None self.steps = None self.progbar = None self.verbose = verbose self.log_freq = log_freq def _is_print(self): return self.verbose and ParallelEnv().local_rank == 0 def on_train_begin(self, logs=None): self.epochs = self.params['epochs'] assert self.epochs self.train_metrics = self.params['metrics'] assert self.train_metrics self._train_timer = { 'data_time': 0, 'batch_time': 0, 'count': 0, 'samples': 0, } if self._is_print(): print( "The loss value printed in the log is the current step, and the metric is the average value of previous step." ) def on_epoch_begin(self, epoch=None, logs=None): self.steps = self.params['steps'] self.epoch = epoch self.train_step = 0 if self.epochs and self._is_print(): print('Epoch %d/%d' % (epoch + 1, self.epochs)) self.train_progbar = ProgressBar(num=self.steps, verbose=self.verbose) self._train_timer['batch_start_time'] = time.time() def _updates(self, logs, mode): values = [] metrics = getattr(self, '%s_metrics' % (mode)) progbar = getattr(self, '%s_progbar' % (mode)) steps = getattr(self, '%s_step' % (mode)) for k in metrics: if k in logs: values.append((k, logs[k])) if self.verbose == 3 and hasattr(self, '_%s_timer' % (mode)): timer = getattr(self, '_%s_timer' % (mode)) cnt = timer['count'] if timer['count'] > 0 else 1.0 samples = timer['samples'] if timer['samples'] > 0 else 1.0 values.append( ('avg_reader_cost', "%.5f sec" % (timer['data_time'] / cnt))) values.append( ('avg_batch_cost', "%.5f sec" % (timer['batch_time'] / cnt))) values.append( ('ips', "%.5f samples/sec" % (samples / (timer['data_time'] + timer['batch_time'])))) progbar.update(steps, values) def on_train_batch_begin(self, step, logs=None): self._train_timer['batch_data_end_time'] = time.time() self._train_timer['data_time'] += ( self._train_timer['batch_data_end_time'] - self._train_timer['batch_start_time']) def on_train_batch_end(self, step, logs=None): logs = logs or {} self.train_step += 1 self._train_timer['batch_time'] += ( time.time() - self._train_timer['batch_data_end_time']) self._train_timer['count'] += 1 samples = logs.get('batch_size', 1) self._train_timer['samples'] += samples if self._is_print() and self.train_step % self.log_freq == 0: if self.steps is None or self.train_step < self.steps: self._updates(logs, 'train') self._train_timer['batch_start_time'] = time.time() def on_epoch_end(self, epoch, logs=None): logs = logs or {} if self._is_print() and (self.steps is not None): self._updates(logs, 'train') def on_eval_begin(self, logs=None): self.eval_steps = logs.get('steps', None) self.eval_metrics = logs.get('metrics', []) self.eval_step = 0 self.evaled_samples = 0 self._eval_timer = { 'data_time': 0, 'batch_time': 0, 'count': 0, 'samples': 0, } self.eval_progbar = ProgressBar( num=self.eval_steps, verbose=self.verbose) if self._is_print(): print('Eval begin...') print( "The loss value printed in the log is the current batch, and the metric is the average value of previous step." ) self._eval_timer['batch_start_time'] = time.time() def on_eval_batch_begin(self, step, logs=None): self._eval_timer['batch_data_end_time'] = time.time() self._eval_timer['data_time'] += ( self._eval_timer['batch_data_end_time'] - self._eval_timer['batch_start_time']) def on_eval_batch_end(self, step, logs=None): logs = logs or {} self.eval_step += 1 samples = logs.get('batch_size', 1) self.evaled_samples += samples self._eval_timer['batch_time'] += ( time.time() - self._eval_timer['batch_data_end_time']) self._eval_timer['count'] += 1 samples = logs.get('batch_size', 1) self._eval_timer['samples'] += samples if self._is_print() and self.eval_step % self.log_freq == 0: if self.eval_steps is None or self.eval_step < self.eval_steps: self._updates(logs, 'eval') self._eval_timer['batch_start_time'] = time.time() def on_predict_begin(self, logs=None): self.test_steps = logs.get('steps', None) self.test_metrics = logs.get('metrics', []) self.test_step = 0 self.tested_samples = 0 self._test_timer = { 'data_time': 0, 'batch_time': 0, 'count': 0, 'samples': 0, } self.test_progbar = ProgressBar( num=self.test_steps, verbose=self.verbose) if self._is_print(): print('Predict begin...') self._test_timer['batch_start_time'] = time.time() def on_predict_batch_begin(self, step, logs=None): self._test_timer['batch_data_end_time'] = time.time() self._test_timer['data_time'] += ( self._test_timer['batch_data_end_time'] - self._test_timer['batch_start_time']) def on_predict_batch_end(self, step, logs=None): logs = logs or {} self.test_step += 1 samples = logs.get('batch_size', 1) self.tested_samples += samples self._test_timer['batch_time'] += ( time.time() - self._test_timer['batch_data_end_time']) self._test_timer['count'] += 1 samples = logs.get('batch_size', 1) self._test_timer['samples'] += samples if self.test_step % self.log_freq == 0 and self._is_print(): if self.test_steps is None or self.test_step < self.test_steps: self._updates(logs, 'test') self._test_timer['batch_start_time'] = time.time() def on_eval_end(self, logs=None): logs = logs or {} if self._is_print() and (self.eval_steps is not None): self._updates(logs, 'eval') print('Eval samples: %d' % (self.evaled_samples)) def on_predict_end(self, logs=None): logs = logs or {} if self._is_print(): if self.test_step % self.log_freq != 0 or self.verbose == 1: self._updates(logs, 'test') print('Predict samples: %d' % (self.tested_samples)) class ModelCheckpoint(Callback): """ Model checkpoint callback function. Args: save_freq(int): The frequency, in number of epochs, the model checkpoint are saved. Default: 1. save_dir(str|None): The directory to save checkpoint during training. If None, will not save checkpoint. Default: None. Examples: .. code-block:: python import paddle import paddle.vision.transforms as T from paddle.vision.datasets import MNIST from paddle.static import InputSpec inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] labels = [InputSpec([None, 1], 'int64', 'label')] transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = MNIST(mode='train', transform=transform) lenet = paddle.vision.LeNet() model = paddle.Model(lenet, inputs, labels) optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters()) model.prepare(optimizer=optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp') model.fit(train_dataset, batch_size=64, callbacks=callback) """ def __init__(self, save_freq=1, save_dir=None): self.save_freq = save_freq self.save_dir = save_dir def on_epoch_begin(self, epoch=None, logs=None): self.epoch = epoch def _is_save(self): return self.model and self.save_dir and ParallelEnv().local_rank == 0 def on_epoch_end(self, epoch, logs=None): if self._is_save() and self.epoch % self.save_freq == 0: path = '{}/{}'.format(self.save_dir, epoch) print('save checkpoint at {}'.format(os.path.abspath(path))) self.model.save(path) def on_train_end(self, logs=None): if self._is_save(): path = '{}/final'.format(self.save_dir) print('save checkpoint at {}'.format(os.path.abspath(path))) self.model.save(path) class LRScheduler(Callback): """Lr scheduler callback function Args: by_step(bool, optional): whether to update learning rate scheduler by step. Default: True. by_epoch(bool, optional): whether to update learning rate scheduler by epoch. Default: False. Examples: .. code-block:: python import paddle import paddle.vision.transforms as T from paddle.static import InputSpec inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] labels = [InputSpec([None, 1], 'int64', 'label')] transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform) lenet = paddle.vision.LeNet() model = paddle.Model(lenet, inputs, labels) base_lr = 1e-3 boundaries = [5, 8] wamup_steps = 4 def make_optimizer(parameters=None): momentum = 0.9 weight_decay = 5e-4 values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)] learning_rate = paddle.optimizer.lr.PiecewiseDecay( boundaries=boundaries, values=values) learning_rate = paddle.optimizer.lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=wamup_epochs, start_lr=base_lr / 5., end_lr=base_lr, verbose=True) optimizer = paddle.optimizer.Momentum( learning_rate=learning_rate, weight_decay=weight_decay, momentum=momentum, parameters=parameters) return optimizer optim = make_optimizer(parameters=lenet.parameters()) model.prepare(optimizer=optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) # if LRScheduler callback not set, an instance LRScheduler update by step # will be created auto. model.fit(train_dataset, batch_size=64) # create a learning rate scheduler update by epoch callback = paddle.callbacks.LRScheduler(by_step=False, by_epoch=True) model.fit(train_dataset, batch_size=64, callbacks=callback) """ def __init__(self, by_step=True, by_epoch=False): if by_step and by_epoch: raise ValueError( "by_step option is mutually exclusive with by_epoch") self.by_step = by_step self.by_epoch = by_epoch def on_epoch_end(self, epoch, logs=None): if self.by_epoch: if self.model._optimizer and \ hasattr(self.model._optimizer, '_learning_rate') and \ isinstance(self.model._optimizer._learning_rate, paddle.optimizer.lr.LRScheduler): self.model._optimizer._learning_rate.step() def on_train_batch_end(self, step, logs=None): if self.by_step: if self.model._optimizer and \ hasattr(self.model._optimizer, '_learning_rate') and \ isinstance(self.model._optimizer._learning_rate, paddle.optimizer.lr.LRScheduler): self.model._optimizer._learning_rate.step() class EarlyStopping(Callback): """Stop training when the given monitor stopped improving during evaluation. Args: monitor(str): Quantity to be monitored. Default: 'loss'. mode(str|None): Mode should be one of 'auto', 'min' or 'max'. In 'min' mode, training will stop until monitored quantity stops decreasing. In 'max' mode, training will stop until monitored quantity stops increasing. In 'auto' mode, exact mode can be inferred by the name of monitor. If 'acc' in monitor, the mode will be considered as 'max', otherwise the mode will be set to 'min'. Default: 'auto'. patience(int): Number of epochs with no improvement after which training will be stopped. Default: 0. verbose(int): The verbosity mode, should be 0 or 1. When verbose=0, logs will not be printed. When verbose=1, logs will be printed. Default: 1. min_delta(int|float): The minimum change of monitored quantity. If the change is less than min_delta, model could be considered as no improvement. Default: 0. baseline(int|float|None): Baseline value for the monitored quantity. Training will stop if the model doesn't show improvement over the baseline. Default: None. save_best_model(bool): Whether to save best model. Default: True. Examples: .. code-block:: python import paddle from paddle import Model from paddle.static import InputSpec from paddle.vision.models import LeNet from paddle.vision.datasets import MNIST from paddle.metric import Accuracy from paddle.nn import CrossEntropyLoss import paddle.vision.transforms as T device = paddle.set_device('cpu') sample_num = 200 save_dir = './best_model_checkpoint' transform = T.Compose( [T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = MNIST(mode='train', transform=transform) val_dataset = MNIST(mode='test', transform=transform) net = LeNet() optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=net.parameters()) inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')] labels = [InputSpec([None, 1], 'int64', 'label')] model = Model(net, inputs=inputs, labels=labels) model.prepare( optim, loss=CrossEntropyLoss(reduction="sum"), metrics=[Accuracy()]) callbacks = paddle.callbacks.EarlyStopping( 'loss', mode='min', patience=1, verbose=1, min_delta=0, baseline=None, save_best_model=True) model.fit(train_dataset, val_dataset, batch_size=64, log_freq=200, save_freq=10, save_dir=save_dir, epochs=20, callbacks=[callbacks]) """ def __init__(self, monitor='loss', mode='auto', patience=0, verbose=1, min_delta=0, baseline=None, save_best_model=True): super(EarlyStopping, self).__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.baseline = baseline self.min_delta = abs(min_delta) self.wait_epoch = 0 self.best_weights = None self.stopped_epoch = 0 self.save_best_model = save_best_model # The value of `save_dir` is set in function `config_callbacks` self.save_dir = None if mode not in ['auto', 'min', 'max']: warnings.warn('EarlyStopping mode %s is unknown, ' 'fallback to auto mode.' % mode) mode = 'auto' if mode == 'min': self.monitor_op = np.less elif mode == 'max': self.monitor_op = np.greater # When mode == 'auto', the mode should be inferred by `self.monitor` else: if 'acc' in self.monitor: self.monitor_op = np.greater else: self.monitor_op = np.less if self.monitor_op == np.greater: self.min_delta *= 1 else: self.min_delta *= -1 def on_train_begin(self, logs=None): self.wait_epoch = 0 if self.baseline is not None: self.best_value = self.baseline else: self.best_value = np.inf if self.monitor_op == np.less else -np.inf self.best_weights = None def on_eval_end(self, logs=None): if logs is None or self.monitor not in logs: warnings.warn( 'Monitor of EarlyStopping should be loss or metric name.') return current = logs[self.monitor] if isinstance(current, (list, tuple)): current = current[0] elif isinstance(current, numbers.Number): current = current else: return if self.monitor_op(current - self.min_delta, self.best_value): self.best_value = current self.wait_epoch = 0 if self.save_best_model and self.save_dir is not None: path = os.path.join(self.save_dir, 'best_model') self.model.save(path) else: self.wait_epoch += 1 if self.wait_epoch >= self.patience: self.model.stop_training = True if self.verbose > 0: print('Epoch %d: Early stopping.' % (self.stopped_epoch + 1)) if self.save_best_model and self.save_dir is not None: print('Best checkpoint has been saved at %s' % (os.path.abspath( os.path.join(self.save_dir, 'best_model')))) self.stopped_epoch += 1 class VisualDL(Callback): """ VisualDL callback function. Args: log_dir (str): The directory to save visualdl log file. Examples: .. code-block:: python import paddle import paddle.vision.transforms as T from paddle.static import InputSpec inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] labels = [InputSpec([None, 1], 'int64', 'label')] transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform) eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform) net = paddle.vision.LeNet() model = paddle.Model(net, inputs, labels) optim = paddle.optimizer.Adam(0.001, parameters=net.parameters()) model.prepare(optimizer=optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) ## uncomment following lines to fit model with visualdl callback function # callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir') # model.fit(train_dataset, eval_dataset, batch_size=64, callbacks=callback) """ def __init__(self, log_dir): self.log_dir = log_dir self.epochs = None self.steps = None self.epoch = 0 def _is_write(self): return ParallelEnv().local_rank == 0 def on_train_begin(self, logs=None): self.epochs = self.params['epochs'] assert self.epochs self.train_metrics = self.params['metrics'] assert self.train_metrics self._is_fit = True self.train_step = 0 def on_epoch_begin(self, epoch=None, logs=None): self.steps = self.params['steps'] self.epoch = epoch def _updates(self, logs, mode): if not self._is_write(): return if not hasattr(self, 'writer'): visualdl = try_import('visualdl') self.writer = visualdl.LogWriter(self.log_dir) metrics = getattr(self, '%s_metrics' % (mode)) current_step = getattr(self, '%s_step' % (mode)) if mode == 'train': total_step = current_step else: total_step = self.epoch for k in metrics: if k in logs: temp_tag = mode + '/' + k if isinstance(logs[k], (list, tuple)): temp_value = logs[k][0] elif isinstance(logs[k], numbers.Number): temp_value = logs[k] else: continue self.writer.add_scalar( tag=temp_tag, step=total_step, value=temp_value) def on_train_batch_end(self, step, logs=None): logs = logs or {} self.train_step += 1 if self._is_write(): self._updates(logs, 'train') def on_eval_begin(self, logs=None): self.eval_steps = logs.get('steps', None) self.eval_metrics = logs.get('metrics', []) self.eval_step = 0 self.evaled_samples = 0 def on_train_end(self, logs=None): if hasattr(self, 'writer'): self.writer.close() delattr(self, 'writer') def on_eval_end(self, logs=None): if self._is_write(): self._updates(logs, 'eval') if (not hasattr(self, '_is_fit')) and hasattr(self, 'writer'): self.writer.close() delattr(self, 'writer') class ReduceLROnPlateau(Callback): """Reduce learning rate when a metric of evaluation has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Args: monitor(str, optional): Quantity to be monitored. Default: 'loss'. factor(float, optional): factor by which the learning rate will be reduced. `new_lr = lr * factor`. Default: 0.1. patience(int, optional): Number of epochs with no improvement after which learning rate will be reduced. Default: 10. verbose(int, optional): The verbosity mode. 0: quiet, 1: update messages. Default: 1. mode(str, optional): one of `{'auto', 'min', 'max'}`. In `'min'` mode, the learning rate will be reduced when the quantity monitored has stopped decreasing. In 'max' mode, learning rate will reduce until monitored quantity stops increasing. In 'auto' mode, exact mode can be inferred by the name of monitor. If 'acc' in monitor, the mode will be considered as 'max', otherwise the mode will be set to 'min'. Default: 'auto'. min_delta(int|float, optional): threshold for measuring the new optimum, to only focus on significant changes. Default: 0. cooldown(int, optional): number of epochs to wait before resuming normal operation after lr has been reduced. Default: 0. min_lr(float, optional): lower bound on the learning rate. Default: 0. Examples: .. code-block:: python import paddle from paddle import Model from paddle.static import InputSpec from paddle.vision.models import LeNet from paddle.vision.datasets import MNIST from paddle.metric import Accuracy from paddle.nn.layer.loss import CrossEntropyLoss import paddle.vision.transforms as T sample_num = 200 transform = T.Compose( [T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = MNIST(mode='train', transform=transform) val_dataset = MNIST(mode='test', transform=transform) net = LeNet() optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=net.parameters()) inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')] labels = [InputSpec([None, 1], 'int64', 'label')] model = Model(net, inputs=inputs, labels=labels) model.prepare( optim, loss=CrossEntropyLoss(), metrics=[Accuracy()]) callbacks = paddle.callbacks.ReduceLROnPlateau(patience=3, verbose=1) model.fit(train_dataset, val_dataset, batch_size=64, log_freq=200, save_freq=10, epochs=20, callbacks=[callbacks]) """ def __init__(self, monitor='loss', factor=0.1, patience=10, verbose=1, mode='auto', min_delta=1e-4, cooldown=0, min_lr=0): super(ReduceLROnPlateau, self).__init__() self.monitor = monitor if factor >= 1.0: raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.') self.factor = factor self.min_lr = min_lr self.min_delta = min_delta self.patience = patience self.verbose = verbose self.cooldown = cooldown self.cooldown_counter = 0 # Cooldown counter. self.wait = 0 self.best = 0 self.mode = mode self.monitor_op = None self.epoch = 0 self._reset() def _reset(self): """Resets wait counter and cooldown counter. """ if self.mode not in ['auto', 'min', 'max']: warnings.warn('Learning rate reduction mode %s is unknown, ' 'fallback to auto mode.' % self.mode) self.mode = 'auto' if (self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor)): self.monitor_op = lambda a, b: np.less(a, b - self.min_delta) self.best = np.Inf else: self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta) self.best = -np.Inf self.cooldown_counter = 0 self.wait = 0 def on_train_begin(self, logs=None): self._reset() def on_eval_end(self, logs=None): if logs is None or self.monitor not in logs: warnings.warn( 'Monitor of ReduceLROnPlateau should be loss or metric name.') return else: try: lr = self.model._optimizer._learning_rate if not isinstance(lr, float): warnings.warn( 'Expected learning_rate be float, bug got {}.'.format( type(lr))) return except Exception as e: warnings.warn( 'There are something wrong when get learning_rate from optimizer: {}.'. format(e)) return current = logs[self.monitor] if isinstance(current, (list, tuple)): current = current[0] elif isinstance(current, numbers.Number): current = current else: return if self.in_cooldown(): self.cooldown_counter -= 1 self.wait = 0 if self.monitor_op(current, self.best): self.best = current self.wait = 0 elif not self.in_cooldown(): self.wait += 1 if self.wait >= self.patience: old_lr = self.model._optimizer.get_lr() if old_lr > np.float32(self.min_lr): new_lr = old_lr * self.factor new_lr = max(new_lr, self.min_lr) self.model._optimizer._learning_rate = new_lr if self.verbose > 0 and ParallelEnv().local_rank == 0: print('\nEpoch %d: ReduceLROnPlateau reducing learning ' 'rate to %s.' % (self.epoch + 1, new_lr)) self.cooldown_counter = self.cooldown self.wait = 0 self.epoch += 1 def in_cooldown(self): return self.cooldown_counter > 0