/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/sum_op.h" #include "paddle/fluid/operators/mlu/mlu_baseop.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class SumMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto out_var = ctx.OutputVar("Out"); if (out_var->IsType()) { // init auto *out = out_var->GetMutable(); auto ins = ctx.MultiInput("X"); out->mutable_data(ctx.GetPlace()); auto place = ctx.GetPlace(); int ins_size = static_cast(ins.size()); if (ins_size == 1) { TensorCopy(*ins[0], place, out); return; } // MLU shoul do sth std::vector inputs; std::vector input_descs; std::vector desc_vector; for (int i = 0; i < ins_size; i++) { input_descs.emplace_back(MLUCnnlTensorDesc( *ins[i], CNNL_LAYOUT_ARRAY, ToCnnlDataType(ins[i]->type()))); desc_vector.push_back(input_descs.back().get()); inputs.push_back(GetBasePtr(ins[i])); } // init out tensors MLUCnnlTensorDesc output_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType(out->type())); uint32_t ins_size_t = static_cast(ins_size); MLUCnnl::AddN(ctx, ins_size_t, desc_vector.data(), inputs.data(), output_desc.get(), GetBasePtr(out)); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Expected type of Output(out) must be Tensor or But got " "unsupport type: %s.", framework::ToTypeName(out_var->Type()))); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_MLU_KERNEL( sum, ops::SumMLUKernel, ops::SumMLUKernel);