# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UCI Housing dataset. This module will download dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and parse training set and test set into paddle reader creators. """ import os import numpy as np import tempfile import tarfile import os import paddle.dataset.common __all__ = ['train', 'test'] URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data' MD5 = 'd4accdce7a25600298819f8e28e8d593' feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'convert' ] UCI_TRAIN_DATA = None UCI_TEST_DATA = None FLUID_URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fluid/fit_a_line.fluid.tar' FLUID_MD5_MODEL = '6e6dd637ccd5993961f68bfbde46090b' def feature_range(maximums, minimums): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt fig, ax = plt.subplots() feature_num = len(maximums) ax.bar(range(feature_num), maximums - minimums, color='r', align='center') ax.set_title('feature scale') plt.xticks(range(feature_num), feature_names) plt.xlim([-1, feature_num]) fig.set_figheight(6) fig.set_figwidth(10) if not os.path.exists('./image'): os.makedirs('./image') fig.savefig('image/ranges.png', dpi=48) plt.close(fig) def load_data(filename, feature_num=14, ratio=0.8): global UCI_TRAIN_DATA, UCI_TEST_DATA if UCI_TRAIN_DATA is not None and UCI_TEST_DATA is not None: return data = np.fromfile(filename, sep=' ') data = data.reshape(data.shape[0] / feature_num, feature_num) maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum( axis=0) / data.shape[0] feature_range(maximums[:-1], minimums[:-1]) for i in xrange(feature_num - 1): data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) offset = int(data.shape[0] * ratio) UCI_TRAIN_DATA = data[:offset] UCI_TEST_DATA = data[offset:] def train(): """ UCI_HOUSING training set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Training reader creator :rtype: callable """ global UCI_TRAIN_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TRAIN_DATA: yield d[:-1], d[-1:] return reader def test(): """ UCI_HOUSING test set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Test reader creator :rtype: callable """ global UCI_TEST_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TEST_DATA: yield d[:-1], d[-1:] return reader def fluid_model(): parameter_tar = paddle.dataset.common.download(FLUID_URL_MODEL, 'uci_housing', FLUID_MD5_MODEL, 'fit_a_line.fluid.tar') tar = tarfile.TarFile(parameter_tar, mode='r') dirpath = tempfile.mkdtemp() tar.extractall(path=dirpath) return dirpath def predict_reader(): """ UCI_HOUSING test set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Test reader creator :rtype: callable """ global UCI_TEST_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TEST_DATA: yield (d[:-1],) return reader def fetch(): paddle.dataset.common.download(URL, 'uci_housing', MD5) def convert(path): """ Converts dataset to recordio format """ paddle.dataset.common.convert(path, train(), 1000, "uci_housing_train") paddle.dataset.common.convert(path, test(), 1000, "uci_houseing_test")