/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/operators/activation_op.h" #include "paddle/operators/math/detail/activation_functions.h" #include "paddle/operators/math/lstm_compute.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/sequence2batch.h" #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using LoDTensor = framework::LoDTensor; using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template inline void ReorderInitState(const DeviceContext& ctx, const framework::Tensor& src, const size_t* index, framework::Tensor* dst, bool indexed_src) { math::CopyMatrixRowsFunctor row_shuffle; dst->mutable_data(src.dims(), ctx.GetPlace()); row_shuffle(ctx, src, index, *dst, indexed_src); } template class LSTMPKernel : public framework::OpKernel { public: template void ActCompute(const math::detail::ActivationType act_type, const Device& d, X x, Y y) const { if (act_type == math::detail::ActivationType::kIdentity) y.device(d) = x; else if (act_type == math::detail::ActivationType::kSigmoid) SigmoidFunctor()(d, x, y); else if (act_type == math::detail::ActivationType::kTanh) TanhFunctor()(d, x, y); else if (act_type == math::detail::ActivationType::kReLU) ReluFunctor()(d, x, y); else PADDLE_THROW("unsupported activation type"); } void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* weight = ctx.Input("Weight"); auto* proj_weight = ctx.Input("ProjWeight"); auto* bias = ctx.Input("Bias"); auto* hidden_t0 = ctx.Input("H0"); auto* ordered_proj0 = ctx.Output("OrderedP0"); auto* cell_t0 = ctx.Input("C0"); auto* batch_gate = ctx.Output("BatchGate"); batch_gate->mutable_data(ctx.GetPlace()); auto* proj_out = ctx.Output("Projection"); proj_out->mutable_data(ctx.GetPlace()); auto* cell_out = ctx.Output("Cell"); cell_out->mutable_data(ctx.GetPlace()); bool is_reverse = ctx.Attr("is_reverse"); math::LoDTensor2BatchFunctor to_batch; auto& device_ctx = ctx.template device_context(); to_batch(device_ctx, *input, *batch_gate, true, is_reverse); auto in_dims = input->dims(); int frame_size = static_cast(in_dims[1] / 4); framework::DDim dims({in_dims[0], frame_size}); framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]}); if (bias) { Tensor b = *bias; b.Resize({bias->numel(), 1}); Tensor gate_bias = b.Slice(0, 4 * frame_size); math::RowwiseAdd add_bias; add_bias(device_ctx, *batch_gate, gate_bias, batch_gate); } math::LstmMetaValue lstmp_value; if (bias && ctx.Attr("use_peepholes")) { T* bias_data = const_cast(bias->data()); // the code style in LstmpMetaValue will be updated later. lstmp_value.check_ig = bias_data + 4 * frame_size; lstmp_value.check_fg = lstmp_value.check_ig + frame_size; lstmp_value.check_og = lstmp_value.check_fg + frame_size; } else { lstmp_value.check_ig = nullptr; lstmp_value.check_fg = nullptr; lstmp_value.check_og = nullptr; } lstmp_value.prev_state_value = nullptr; Tensor ordered_c0; const size_t* order = batch_gate->lod()[2].data(); if (cell_t0) { // Since the batch computing for LSTMP reorders the input sequence // according to their length. The initialized cell state also needs // to reorder. ReorderInitState(device_ctx, *cell_t0, order, &ordered_c0, true); lstmp_value.prev_state_value = ordered_c0.data(); } // Use the local variable as here. LoDTensor batch_proj, batch_cell; auto* batch_cell_pre_act = ctx.Output("BatchCellPreAct"); batch_cell_pre_act->mutable_data(dims, ctx.GetPlace()); auto* batch_hidden = ctx.Output("BatchHidden"); batch_hidden->mutable_data(dims, ctx.GetPlace()); // T x D batch_proj.mutable_data(proj_dims, ctx.GetPlace()); // T x P batch_cell.mutable_data(dims, ctx.GetPlace()); // T x D auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; auto gate_act = math::detail::GetActivationType( ctx.Attr("gate_activation")); auto cell_act = math::detail::GetActivationType( ctx.Attr("cell_activation")); auto cand_act = math::detail::GetActivationType( ctx.Attr("candidate_activation")); auto share_cell_act = ctx.Attr("share_cell_act"); auto& place = *ctx.template device_context().eigen_device(); for (size_t n = 0; n < num_batch; n++) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); Tensor gate_t = batch_gate->Slice(bstart, bend); Tensor hidden_t = batch_hidden->Slice(bstart, bend); Tensor proj_t = batch_proj.Slice(bstart, bend); Tensor cell_t = batch_cell.Slice(bstart, bend); Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend); int cur_batch_size = bend - bstart; if (n > 0) { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_proj_t = batch_proj.Slice(pre_h_start, pre_h_end); math::matmul(device_ctx, pre_proj_t, false, *weight, false, static_cast(1.0), &gate_t, static_cast(1.0)); } else if (hidden_t0) { // If n == 0 and there is no initialized hidden state, that is to say // the H0 is zeros, the calculation W_h * H0 will be skiped. // If n == 0 and there is initialized hidden state, calculate W_h * H0. // Since the batch computing for LSTMP reorders the input sequence // according to their length. The initialized hidden state also needs // to reorder. Tensor ordered_h0; ordered_proj0->mutable_data(ctx.GetPlace()); ReorderInitState(device_ctx, *hidden_t0, order, &ordered_h0, true); math::matmul(device_ctx, ordered_h0, false, *proj_weight, false, static_cast(1.0), ordered_proj0, static_cast(0.0)); if (share_cell_act) { auto proj0_dev = EigenMatrix::From(*ordered_proj0); ActCompute(cell_act, place, proj0_dev, proj0_dev); } math::matmul(device_ctx, *ordered_proj0, false, *weight, false, static_cast(1.0), &gate_t, static_cast(1.0)); } lstmp_value.gate_value = gate_t.data(); lstmp_value.output_value = hidden_t.data(); lstmp_value.state_value = cell_t.data(); lstmp_value.state_active_value = cell_pre_act_t.data(); math::LstmUnitFunctor::compute( device_ctx, lstmp_value, frame_size, cur_batch_size, gate_act, cell_act, cand_act); lstmp_value.prev_state_value = lstmp_value.state_value; math::matmul(device_ctx, hidden_t, false, *proj_weight, false, static_cast(1.0), &proj_t, static_cast(0.0)); if (share_cell_act) { auto proj_t_dev = EigenMatrix::From(proj_t); ActCompute(cell_act, place, proj_t_dev, proj_t_dev); } } math::Batch2LoDTensorFunctor to_seq; batch_proj.set_lod(batch_gate->lod()); // restore the output hidden in LoDTensor from the batch hidden to_seq(device_ctx, batch_proj, *proj_out); batch_cell.set_lod(batch_gate->lod()); // restore the output cell state in LoDTensor from the batch cell to_seq(device_ctx, batch_cell, *cell_out); } }; template class LSTMPGradKernel : public framework::OpKernel { public: template void ActGradCompute(const math::detail::ActivationType act_type, const Device& d, X x, Y y, DX dx, DY dy) const { // x is dummy and won't be used even in Relu(use y instead) if (act_type == math::detail::ActivationType::kIdentity) dx.device(d) = dy; else if (act_type == math::detail::ActivationType::kSigmoid) SigmoidGradFunctor()(d, x, y, dy, dx); else if (act_type == math::detail::ActivationType::kTanh) TanhGradFunctor()(d, x, y, dy, dx); else if (act_type == math::detail::ActivationType::kReLU) ReluGradFunctor()(d, x, y, dy, dx); else PADDLE_THROW("unsupported activation type"); } void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* weight = ctx.Input("Weight"); auto* proj_weight = ctx.Input("ProjWeight"); auto* bias = ctx.Input("Bias"); auto* proj_out = ctx.Input("Projection"); auto* cell_out = ctx.Input("Cell"); auto* batch_gate = ctx.Input("BatchGate"); auto* batch_cell_pre_act = ctx.Input("BatchCellPreAct"); auto* batch_hidden = ctx.Input("BatchHidden"); auto* projection_g = ctx.Input(framework::GradVarName("Projection")); auto* in_g = ctx.Output(framework::GradVarName("Input")); auto* weight_g = ctx.Output(framework::GradVarName("Weight")); auto* proj_weight_g = ctx.Output(framework::GradVarName("ProjWeight")); auto* bias_g = ctx.Output(framework::GradVarName("Bias")); auto* h0 = ctx.Input("H0"); auto* ordered_proj0 = ctx.Input("OrderedP0"); auto* c0 = ctx.Input("C0"); auto* h0_g = ctx.Output(framework::GradVarName("H0")); auto* c0_g = ctx.Output(framework::GradVarName("C0")); auto& device_ctx = ctx.template device_context(); math::SetConstant zero; if (weight_g) { weight_g->mutable_data(ctx.GetPlace()); zero(device_ctx, weight_g, static_cast(0.0)); } if (proj_weight_g) { proj_weight_g->mutable_data(ctx.GetPlace()); zero(device_ctx, proj_weight_g, static_cast(0.0)); } // ordered_h0/c0 is the reordered hidden/cell initialization. // ordered_h0_g/c0_g is the reordered gradient of hidden/cell // initialization. Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g; const size_t* order = batch_gate->lod()[2].data(); if (c0) { ReorderInitState(device_ctx, *c0, order, &ordered_c0, true); } if (c0 && c0_g) { ordered_c0_g.mutable_data(c0_g->dims(), ctx.GetPlace()); } auto in_dims = input->dims(); auto out_dims = cell_out->dims(); framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]}); int frame_size = static_cast(in_dims[1] / 4); PADDLE_ENFORCE_EQ(frame_size, out_dims[1]); math::LstmMetaValue lstmp_value; if (bias && ctx.Attr("use_peepholes")) { T* bias_data = const_cast(bias->data()); lstmp_value.check_ig = bias_data + 4 * frame_size; lstmp_value.check_fg = lstmp_value.check_ig + frame_size; lstmp_value.check_og = lstmp_value.check_fg + frame_size; } else { lstmp_value.check_ig = nullptr; lstmp_value.check_fg = nullptr; lstmp_value.check_og = nullptr; } math::LstmMetaGrad lstmp_grad; if (bias && bias_g) { bias_g->mutable_data(ctx.GetPlace()); zero(device_ctx, bias_g, static_cast(0.0)); } if (bias && bias_g && ctx.Attr("use_peepholes")) { T* bias_g_data = bias_g->data(); lstmp_grad.check_ig_grad = bias_g_data + 4 * frame_size; lstmp_grad.check_fg_grad = lstmp_grad.check_ig_grad + frame_size; lstmp_grad.check_og_grad = lstmp_grad.check_fg_grad + frame_size; } else { lstmp_grad.check_ig_grad = nullptr; lstmp_grad.check_fg_grad = nullptr; lstmp_grad.check_og_grad = nullptr; } math::LoDTensor2BatchFunctor to_batch; auto ToBatch = [&batch_gate, &to_batch]( const DeviceContext& ctx, const framework::LoDTensor& src, const framework::DDim& dims, framework::LoDTensor& dst) { dst.mutable_data(dims, ctx.GetPlace()); dst.set_lod(batch_gate->lod()); to_batch(ctx, src, dst, false); }; LoDTensor batch_hidden_g, batch_proj, batch_proj_g, batch_cell; batch_hidden_g.mutable_data(out_dims, ctx.GetPlace()); ToBatch(device_ctx, *proj_out, proj_dims, batch_proj); // T x P ToBatch(device_ctx, *projection_g, proj_dims, batch_proj_g); // T x P ToBatch(device_ctx, *cell_out, out_dims, batch_cell); // T x D LoDTensor batch_cell_g, batch_gate_g; batch_cell_g.mutable_data(out_dims, ctx.GetPlace()); // TODO(qingqing) support the case output cell has gradient. // to_batch(device_ctx, *cell_g, batch_cell_g, false); zero(device_ctx, &batch_cell_g, static_cast(0.0)); batch_gate_g.mutable_data(batch_gate->dims(), ctx.GetPlace()); batch_gate_g.set_lod(batch_gate->lod()); auto gate_act = math::detail::GetActivationType( ctx.Attr("gate_activation")); auto cell_act = math::detail::GetActivationType( ctx.Attr("cell_activation")); auto cand_act = math::detail::GetActivationType( ctx.Attr("candidate_activation")); auto share_cell_act = ctx.Attr("share_cell_act"); auto& place = *ctx.template device_context().eigen_device(); auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; for (int n = static_cast(num_batch) - 1; n >= 0; n--) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); Tensor cur_proj = batch_proj.Slice(bstart, bend); Tensor proj_g = batch_proj_g.Slice(bstart, bend); if (share_cell_act) { auto cur_proj_dev = EigenMatrix::From(cur_proj); auto proj_g_dev = EigenMatrix::From(proj_g); ActGradCompute(cell_act, place, cur_proj_dev, cur_proj_dev, proj_g_dev, proj_g_dev); } Tensor out_g = batch_hidden_g.Slice(bstart, bend); math::matmul(device_ctx, proj_g, false, *proj_weight, true, static_cast(1.0), &out_g, static_cast(0.0)); Tensor gate = batch_gate->Slice(bstart, bend); Tensor cell = batch_cell.Slice(bstart, bend); Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend); lstmp_value.gate_value = gate.data(); lstmp_value.state_value = cell.data(); lstmp_value.state_active_value = cell_pre_act.data(); Tensor gate_g = batch_gate_g.Slice(bstart, bend); Tensor cell_g = batch_cell_g.Slice(bstart, bend); lstmp_grad.state_grad = cell_g.data(); lstmp_grad.gate_grad = gate_g.data(); lstmp_grad.output_grad = out_g.data(); if (n > 0) { int bstart_pre = static_cast(batch_starts[n - 1]); Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart); Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart); lstmp_value.prev_state_value = cell_pre.data(); lstmp_grad.prev_state_grad = cell_pre_g.data(); } else { lstmp_value.prev_state_value = c0 ? ordered_c0.data() : nullptr; lstmp_grad.prev_state_grad = c0_g ? ordered_c0_g.data() : nullptr; } int cur_batch_size = bend - bstart; math::LstmUnitGradFunctor::compute( device_ctx, lstmp_value, lstmp_grad, frame_size, cur_batch_size, gate_act, cell_act, cand_act); if (n > 0) { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_proj_g = batch_proj_g.Slice(pre_h_start, pre_h_end); math::matmul(device_ctx, gate_g, false, *weight, true, static_cast(1.0), &pre_proj_g, static_cast(1.0)); if (weight_g) { /* backward weight */ auto pre_proj = batch_proj.Slice(pre_h_start, pre_h_end); math::matmul(device_ctx, pre_proj, true, gate_g, false, static_cast(1.0), weight_g, static_cast(1.0)); } if (proj_weight_g) { /* backward proj weigh */ Tensor hidden_t = batch_hidden->Slice(bstart, bend); math::matmul(device_ctx, hidden_t, true, proj_g, false, static_cast(1.0), proj_weight_g, static_cast(1.0)); } } else { if (h0 && weight_g) { ReorderInitState(device_ctx, *h0, order, &ordered_h0, true); if (weight_g) { math::matmul(device_ctx, *ordered_proj0, true, gate_g, false, static_cast(1.0), weight_g, static_cast(1.0)); } } if (h0 && (h0_g || proj_weight_g)) { ordered_h0_g.mutable_data(h0_g->dims(), ctx.GetPlace()); Tensor proj0_g; proj0_g.Resize({in_dims[0], proj_weight->dims()[1]}); proj0_g.mutable_data(ctx.GetPlace()); math::matmul(device_ctx, gate_g, false, *weight, true, static_cast(1.0), &proj0_g, static_cast(0.0)); if (share_cell_act) { auto proj0_dev = EigenMatrix::From(*ordered_proj0); auto proj0_g_dev = EigenMatrix::From(proj0_g); ActGradCompute(cell_act, place, proj0_dev, proj0_dev, proj0_g_dev, proj0_g_dev); } // Tensor proj0_g = proj_g.Slice(bstart, bend); if (h0_g) { math::matmul( device_ctx, proj0_g, false, *proj_weight, true, static_cast(1.0), &ordered_h0_g, static_cast(0.0)); } if (proj_weight_g) { math::matmul(device_ctx, ordered_h0, true, proj0_g, false, static_cast(1.0), proj_weight_g, static_cast(1.0)); } } } } math::Batch2LoDTensorFunctor to_seq; if (in_g) { /* backward data */ in_g->mutable_data(ctx.GetPlace()); to_seq(device_ctx, batch_gate_g, *in_g); } if (bias && bias_g) { /* backward bias */ Tensor b_g = *bias_g; b_g.Resize({bias_g->numel(), 1}); Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size); math::ColwiseSum col_sum; col_sum(device_ctx, batch_gate_g, &gate_bias_g); } if (h0 && h0_g) { ReorderInitState(device_ctx, ordered_h0_g, order, h0_g, false); } if (c0 && c0_g) { ReorderInitState(device_ctx, ordered_c0_g, order, c0_g, false); } } }; } // namespace operators } // namespace paddle