/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/transfer_layout_kernel.h" #include #include #include "paddle/phi/backends/all_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/visit_type.h" #include "paddle/phi/kernels/funcs/data_layout_transform.h" #include "paddle/phi/kernels/funcs/math_function.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/phi/backends/onednn/onednn_helper.h" #endif namespace phi { std::vector GetAxis(const DataLayout& from, const DataLayout& to) { PADDLE_ENFORCE_NE( from, to, phi::errors::InvalidArgument( "Layout transform should transform between different layout.")); if (from == DataLayout::NCHW && to == DataLayout::NHWC) { return {0, 2, 3, 1}; } else if (from == DataLayout::NHWC && to == DataLayout::NCHW) { return {0, 3, 1, 2}; } else { PADDLE_THROW(phi::errors::InvalidArgument("Unsupported layout transform.")); } } template void CastDataLayout(const Context& dev_ctx, const DenseTensor& x, const std::vector& axis, DenseTensor* out) { funcs::Transpose trans4; trans4(dev_ctx, x, out, axis); } template void TransferLayoutGeneral(const Context& dev_ctx, const DenseTensor& x, DataLayout dst_layout, DenseTensor* out) { auto src_dim = x.dims(); auto axis = GetAxis(x.layout(), dst_layout); std::vector dst_dim; dst_dim.resize(axis.size()); for (size_t i = 0; i < axis.size(); i++) { dst_dim[i] = src_dim[axis[i]]; } out->Resize(phi::make_ddim(dst_dim)); dev_ctx.Alloc(out, x.dtype()); PD_VISIT_ALL_TYPES(x.dtype(), "CastDataLayout", ([&] { CastDataLayout(dev_ctx, x, axis, out); })); } #ifdef PADDLE_WITH_MKLDNN template void TransferLayoutMKLDNN(const Context& dev_ctx, const DenseTensor& x, DataLayout src_layout, DataLayout dst_layout, DenseTensor* out) { auto print_tensor_meta = [](const DenseTensor& x) { std::ostringstream oss; oss << "["; oss << "layout:" << x.layout() << " ,"; oss << "dims:" << x.dims() << " ,"; if (x.IsInitialized()) oss << "place:" << x.place(); oss << "]"; return oss.str(); }; VLOG(10) << " x: " << print_tensor_meta(x); VLOG(10) << " out: " << print_tensor_meta(*out) << " " << out; // NOTE(zhiqiu): to handle the special case in ApplyDataTransform() in // data_transfer.cc if (!x.IsInitialized() && src_layout == DataLayout::ONEDNN && dst_layout == DataLayout::NHWC) { VLOG(4) << src_layout << "->" << dst_layout << " " << x.layout(); out->Resize(x.dims()); out->set_layout(dst_layout); funcs::MatchShapeToLayout(out, src_layout, dst_layout); return; } if (src_layout != DataLayout::ONEDNN && dst_layout == DataLayout::ONEDNN) { // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel // Just set layout/format. No real transform occur auto out_format = funcs::OneDNNFormatForSize( x.dims().size(), funcs::ToOneDNNFormat(src_layout)); out->ShareDataWith(x); // For NHWC data we need reshape of tensors as MKL-DNN // is expecting NHWC dims description order if (src_layout == DataLayout::NHWC) { VLOG(4) << "NHWC"; funcs::MatchShapeToLayout(out, src_layout, dst_layout); OneDNNContext::tls().set_cur_paddle_data_layout(src_layout); } dnnl::memory::desc out_mem_desc(vectorize(out->dims()), funcs::ToOneDNNDataType(x.dtype()), out_format); out->set_mem_desc(out_mem_desc); } else if (src_layout == DataLayout::ONEDNN && dst_layout != DataLayout::ONEDNN) { // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel // Do transform via MKLDNN lib funcs::innerTransDataLayoutFromOneDNN( src_layout, dst_layout, x, out, dev_ctx.GetPlace()); } else if (src_layout == DataLayout::ONEDNN && dst_layout == DataLayout::ONEDNN) { PADDLE_ENFORCE_NE( src_layout, dst_layout, errors::PreconditionNotMet( "No layout transform needed between two MKLDNN OPKernels.")); } else { TransferLayoutGeneral(dev_ctx, x, dst_layout, out); } } #endif template void TransferLayoutKernel(const Context& dev_ctx, const DenseTensor& x, int src_layout, int dst_layout, DenseTensor* out) { PADDLE_ENFORCE_NE(src_layout, dst_layout, errors::PreconditionNotMet( "No layout transform needed between same layout.")); VLOG(10) << "TransDataLayout from " << static_cast(src_layout) << " -> " << static_cast(dst_layout); #ifdef PADDLE_WITH_MKLDNN TransferLayoutMKLDNN(dev_ctx, x, static_cast(src_layout), static_cast(dst_layout), out); #else TransferLayoutGeneral( dev_ctx, x, static_cast(dst_layout), out); #endif } } // namespace phi PD_REGISTER_GENERAL_KERNEL(transfer_layout, CPU, ALL_LAYOUT, phi::TransferLayoutKernel, ALL_DTYPE) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_GENERAL_KERNEL(transfer_layout, GPU, ALL_LAYOUT, phi::TransferLayoutKernel, ALL_DTYPE) {} #endif