Activation¶
Abs¶
- 
class paddle.v2.activation.Abs
- Abs Activation. - Forward: \(f(z) = abs(z)\) - Derivative: \[\begin{split}1 &\quad if \quad z > 0 \\ -1 &\quad if \quad z < 0 \\ 0 &\quad if \quad z = 0\end{split}\]
Exp¶
- 
class paddle.v2.activation.Exp
- Exponential Activation. \[f(z) = e^z.\]
Identity¶
- 
paddle.v2.activation.Identity
- alias of - Linear
Linear¶
- 
class paddle.v2.activation.Linear
- Identity Activation. - Just do nothing for output both forward/backward. 
Log¶
- 
class paddle.v2.activation.Log
- Logarithm Activation. \[f(z) = log(z)\]
Square¶
- 
class paddle.v2.activation.Square
- Square Activation. \[f(z) = z^2.\]
Sigmoid¶
- 
class paddle.v2.activation.Sigmoid
- Sigmoid activation. \[f(z) = \frac{1}{1+exp(-z)}\]
Softmax¶
- 
class paddle.v2.activation.Softmax
- Softmax activation for simple input \[P(y=j|x) = \frac{e^{x_j}} {\sum^K_{k=1} e^{x_j} }\]
SequenceSoftmax¶
- 
class paddle.v2.activation.SequenceSoftmax
- Softmax activation for one sequence. The dimension of input feature must be 1 and a sequence. - result = softmax(for each_feature_vector[0] in input_feature) for i, each_time_step_output in enumerate(output): each_time_step_output = result[i] 
Relu¶
- 
class paddle.v2.activation.Relu
- Relu activation. - forward. \(y = max(0, z)\) - derivative: \[\begin{split}1 &\quad if z > 0 \\ 0 &\quad\mathrm{otherwize}\end{split}\]
BRelu¶
- 
class paddle.v2.activation.BRelu
- BRelu Activation. - forward. \(y = min(24, max(0, z))\) - derivative: \[\begin{split}1 &\quad if 0 < z < 24 \\ 0 &\quad \mathrm{otherwise}\end{split}\]
SoftRelu¶
- 
class paddle.v2.activation.SoftRelu
- SoftRelu Activation. 
Tanh¶
- 
class paddle.v2.activation.Tanh
- Tanh activation. \[f(z)=tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}\]
STanh¶
- 
class paddle.v2.activation.STanh
- Scaled Tanh Activation. \[f(z) = 1.7159 * tanh(2/3*z)\]
SoftSign¶
- 
class paddle.v2.activation.SoftSign
- SoftSign Activation. \[f(z)=\frac{z}{1 + |z|}\]
