// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/operators/reduce_ops/reduce_op.h" namespace paddle { namespace operators { struct LogsumexpFunctor { template void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) { auto x_dim = x->dimensions(); auto t_dim = x_dim; for (int i = 0; i < static_cast(dim.size()); i++) { t_dim[dim[i]] = 1; } auto r_dim = x_dim; for (int i = 0; i < static_cast(r_dim.size()); i++) { r_dim[i] = 1; } for (int i = 0; i < static_cast(dim.size()); i++) { r_dim[dim[i]] = x_dim[dim[i]]; } auto y_dim = y->dimensions(); auto x_max = x->maximum(dim); y->device(place) = (x_max + (*x - x_max.reshape(t_dim).broadcast(r_dim)).exp().sum(dim).log()) .reshape(y_dim); } }; struct LogsumexpGradFunctor { template void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy, const Dim& dim, int size) { dx->device(place) = dy->broadcast(dim) * (*x - y->broadcast(dim)).exp(); } }; } // namespace operators } // namespace paddle