# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from paddle.fluid import program_guard, layers from paddle.fluid.optimizer import Momentum, SGD from .meta_optimizer_base import MetaOptimizerBase from .common import OpRole, OP_ROLE_KEY, CollectiveHelper, is_update_op class LocalSGDOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(LocalSGDOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.meta_optimizers_white_list = [] self.snapshot_key = '@SNAPSHOT' def _can_apply(self): if not self.user_defined_strategy.localsgd: return False if self.role_maker.worker_num() <= 1: return False return isinstance(self.inner_opt, Momentum) \ or isinstance(self.inner_opt, SGD) def _disable_strategy(self, dist_strategy): dist_strategy.localsgd = False dist_strategy.localsgd_configs = {'k_steps': 1} def snapshot_name(self, param_name): return param_name + self.snapshot_key def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): minimized = self.inner_opt.minimize( loss, startup_program=startup_program) init_k_steps = self.user_defined_strategy.localsgd_configs['k_steps'] auto_steps = self.user_defined_strategy.auto if startup_program is None: startup_program = default_startup_program() main_block = loss.block self.nrings = 2 collective_helper = CollectiveHelper(self.role_maker, self.nrings) collective_helper.update_startup_program(startup_program) with program_guard(main_block.program): step = layers.autoincreased_step_counter(begin=0) k_steps = layers.create_global_var( name="k_steps", shape=[1], value=init_k_steps, dtype='int64', persistable=True) last_step = layers.create_global_var( name="last_step", shape=[1], value=int(0), dtype='int64', persistable=True) if auto_steps: lr_0 = layers.create_global_var( name="lr_0", shape=[1], value=float(0), dtype='float32', persistable=True) loss_0 = layers.create_global_var( name="loss_0", shape=[1], value=float(0), dtype='float32', persistable=True) global_lr = self.inner_opt._global_learning_rate() def initialize(): layers.assign(loss, loss_0) layers.assign(global_lr, lr_0) layers.cond(step == 0, initialize) def communicate(): ordered_param_snapshot = [] ring_id = -1 for idx, op in reversed(list(enumerate(main_block.ops))): if is_update_op(op): param = main_block.vars[op.input('Param')[0]] if param.is_distributed: continue snapshot = main_block.create_var( name=self.snapshot_name(param.name), shape=param.shape, persistable=True, stop_gradient=True, dtype=param.dtype) main_block._insert_op( idx + 1, type='elementwise_sub', inputs={'X': [snapshot], 'Y': [param]}, outputs={'Out': [param]}, attrs={OP_ROLE_KEY: OpRole.Optimize}) main_block._insert_op( idx + 2, type='c_sync_calc_stream', inputs={'X': param}, outputs={'Out': param}, attrs={OP_ROLE_KEY: OpRole.Optimize}) ring_id = (ring_id + 1) % self.nrings main_block._insert_op( idx + 3, type='c_allreduce_sum', inputs={'X': [param]}, outputs={'Out': [param]}, attrs={ 'ring_id': ring_id, OP_ROLE_KEY: OpRole.Optimize }) ordered_param_snapshot.append((param, snapshot)) for ring_id in range(self.nrings): main_block.append_op( type='c_sync_comm_stream', inputs={'X': param}, outputs={'Out': param}, attrs={ 'ring_id': ring_id, OP_ROLE_KEY: OpRole.Optimize }) for param_snapshot in reversed(ordered_param_snapshot): param = param_snapshot[0] snapshot = param_snapshot[1] main_block.append_op( type='scale', inputs={'X': [param]}, outputs={'Out': [param]}, attrs={ 'scale': 1.0 / self.role_maker.worker_num(), OP_ROLE_KEY: OpRole.Optimize }) main_block.append_op( type='elementwise_sub', inputs={'X': [snapshot], 'Y': [param]}, outputs={'Out': [param]}, attrs={OP_ROLE_KEY: OpRole.Optimize}) main_block.append_op( type='assign', inputs={'X': [param]}, outputs={'Out': [snapshot]}, attrs={OP_ROLE_KEY: OpRole.Optimize}) if auto_steps: next_local_steps = layers.cast( layers.ceil( layers.sqrt(lr_0 * loss / (global_lr * loss_0) * float(init_k_steps))), dtype='int64') max_local_steps = layers.fill_constant( shape=[1], dtype='int64', value=16) next_local_steps = layers.elementwise_min(next_local_steps, max_local_steps) layers.assign(next_local_steps, k_steps) layers.assign(step, last_step) layers.cond(step - last_step == k_steps, communicate) return minimized