# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import paddle.fluid.contrib.mixed_precision as mixed_precision from .meta_optimizer_base import MetaOptimizerBase __all__ = ["AMPOptimizer"] class AMPOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(AMPOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.amp_opt = None # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = [] def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(AMPOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) def _can_apply(self): if self.user_defined_strategy.amp: return True return False def _disable_strategy(self, dist_strategy): dist_strategy.amp = False dist_strategy.amp_configs = {} def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): if self.amp_opt is None: config = self.user_defined_strategy.amp_configs custom_white_list = set(config['custom_white_list']) custom_black_list = set(config['custom_black_list']) custom_black_varnames = set(config['custom_black_varnames']) amp_lists = mixed_precision.AutoMixedPrecisionLists( custom_white_list, custom_black_list, custom_black_varnames) self.amp_opt = mixed_precision.decorate( self.inner_opt, amp_lists, config['init_loss_scaling'], config['incr_every_n_steps'], config['decr_every_n_nan_or_inf'], config['incr_ratio'], config['decr_ratio'], config['use_dynamic_loss_scaling']) optimize_ops, params_grads = \ self.amp_opt.minimize(loss, startup_program, parameter_list, no_grad_set) return optimize_ops, params_grads