# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from ...fluid.layer_helper import LayerHelper from ...fluid.data_feeder import check_variable_and_dtype import paddle.fluid as fluid # TODO: define loss functions of neural network import numpy as np import paddle import paddle.fluid as fluid from ...fluid.framework import core, in_dygraph_mode from ...fluid.layers.nn import _elementwise_op_in_dygraph from ...fluid.layers import bpr_loss #DEFINE_ALIAS from ...fluid.layers import center_loss #DEFINE_ALIAS from ...fluid.layers import dice_loss #DEFINE_ALIAS from ...fluid.layers import iou_similarity #DEFINE_ALIAS from ...fluid.layers import log_loss #DEFINE_ALIAS from ...fluid.layers import npair_loss #DEFINE_ALIAS from ...fluid.layers import rank_loss #DEFINE_ALIAS from ...fluid.layers import reshape from ...fluid.layers import sigmoid_cross_entropy_with_logits #DEFINE_ALIAS from ...fluid.layers import sigmoid_focal_loss #DEFINE_ALIAS from ...fluid.layers import smooth_l1 #DEFINE_ALIAS from ...fluid.layers import softmax_with_cross_entropy #DEFINE_ALIAS from ...fluid.layers import square_error_cost #DEFINE_ALIAS from ...fluid.layers import ssd_loss #DEFINE_ALIAS from ...fluid.layers import teacher_student_sigmoid_loss #DEFINE_ALIAS from ...fluid.layers import edit_distance #DEFINE_ALIAS from ...fluid.layers import huber_loss #DEFINE_ALIAS from ...fluid.layers import sampled_softmax_with_cross_entropy #DEFINE_ALIAS from ...fluid.layer_helper import LayerHelper from ...fluid.framework import in_dygraph_mode from ...fluid.framework import _varbase_creator from ...fluid.framework import Variable __all__ = [ 'binary_cross_entropy', 'bpr_loss', 'center_loss', 'cross_entropy', 'dice_loss', 'edit_distance', 'huber_loss', 'iou_similarity', 'kl_div', 'l1_loss', 'log_loss', 'mse_loss', 'margin_ranking_loss', # 'nce', 'nll_loss', 'npair_loss', 'rank_loss', 'sampled_softmax_with_cross_entropy', 'sigmoid_cross_entropy_with_logits', 'sigmoid_focal_loss', 'smooth_l1', 'smooth_l1_loss', 'softmax_with_cross_entropy', 'square_error_cost', 'ssd_loss', 'teacher_student_sigmoid_loss', 'ctc_loss', ] def binary_cross_entropy(input, label, weight=None, reduction='mean', name=None): """ This op measures the binary_cross_entropy loss between input predictions ``input`` and target labels ``label`` . The binary_cross_entropy loss can be described as: If :attr:`weight` is set, the loss is: .. math:: Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input)) If :attr:`weight` is None, the loss is: .. math:: Out = -1 * (label * log(input) + (1 - label) * log(1 - input)) If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`. If :attr:`reduction` set to ``'mean'``, the reduced mean loss is: .. math:: Out = MEAN(Out) If :attr:`reduction` set to ``'sum'``, the reduced sum loss is: .. math:: Out = SUM(Out) Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label`` should be numbers between 0 and 1. Parameters: input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *], N is batch_size, `*` means number of additional dimensions. The ``input`` should always be the output of sigmod. Available dtype is float32, float64. label (Tensor): The target labels tensor. 2-D tensor with the same shape as ``input``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64. weight (Tensor, optional): A manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size nbatch and the data type is float32, float64. Default is ``'None'``. reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; If :attr:`reduction` is ``'sum'``, the summed loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is scalar. Examples: .. code-block:: python import paddle import numpy as np input_data = np.array([0.5, 0.6, 0.7]).astype("float32") label_data = np.array([1.0, 0.0, 1.0]).astype("float32") paddle.disable_static() input = paddle.to_tensor(input_data) label = paddle.to_tensor(label_data) output = paddle.nn.functional.binary_cross_entropy(input, label) print(output.numpy()) # [0.65537095] paddle.enable_static() """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in binary_cross_entropy should be 'sum', " "'mean' or 'none', but received %s, which is not allowed." % reduction) if in_dygraph_mode(): one = _varbase_creator(dtype=input.dtype) core.ops.fill_constant(one, 'value', float(1.0), 'force_cpu', False, 'dtype', one.dtype, 'str_value', '1.0', 'shape', [1]) one.stop_gradient = True label_minus = core.ops.elementwise_sub(label, one) input_minus = core.ops.elementwise_sub(one, input) input_minus_log = core.ops.log(input_minus) input_log = core.ops.log(input) loss_1 = core.ops.elementwise_mul(label_minus, input_minus_log) loss_2 = core.ops.elementwise_mul(label, input_log) out = core.ops.elementwise_sub(loss_1, loss_2) if weight is not None: out = core.ops.elementwise_mul(out, weight, 'axis', -1) if reduction == 'sum': return core.ops.reduce_sum(out, 'dim', [0], 'keep_dim', False, "reduce_all", True) elif reduction == 'mean': return core.ops.reduce_mean(out, 'dim', [0], 'keep_dim', False, "reduce_all", True) else: return out fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'binary_cross_entropy') fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64'], 'binary_cross_entropy') one = paddle.fill_constant(shape=[1], value=1.0, dtype=input.dtype) one.stop_gradient = True label_minus = paddle.elementwise_sub(label, one) input_minus = paddle.elementwise_sub(one, input) input_minus_log = paddle.log(input_minus) input_log = paddle.log(input) loss_1 = paddle.multiply(label_minus, input_minus_log) loss_2 = paddle.multiply(label, input_log) sub_name = name if weight is None and reduction is 'none' else None out = paddle.elementwise_sub(loss_1, loss_2, name=sub_name) if weight is not None: if isinstance(weight, paddle.framework.Variable): weight_name = name if reduction is 'none' else None out = paddle.multiply(out, weight, axis=-1, name=weight_name) else: raise ValueError( "The weight is not a Tensor, please convert to Tensor.") if reduction == 'sum': return paddle.sum(out, name=name) elif reduction == 'mean': return paddle.mean(out, name=name) else: return out def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None): """ This operator calculates smooth_l1_loss. Creates a criterion that uses a squared term if the absolute element-wise error falls below 1 and an L1 term otherwise. In some cases it can prevent exploding gradients and it is more robust and less sensitivity to outliers. Also known as the Huber loss: .. math:: loss(x,y)=\\frac{1}{n}\\sum_{i}z_i where z_i is given by: .. math:: \\mathop{z_i}=\\left\\{\\begin{array}{rcl} 0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\ delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise} \\end{array} \\right. Parameters: input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1. label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input. reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. delta (float, optional): Specifies the hyperparameter delta to be used. The value determines how large the errors need to be to use L1. Errors smaller than delta are minimized with L2. Parameter is ignored for negative/zero values. Default = 1.0 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: The tensor variable storing the smooth_l1_loss of input and label. Return type: Tensor. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() input_data = np.random.rand(3,3).astype("float32") label_data = np.random.rand(3,3).astype("float32") input = paddle.to_tensor(input_data) label = paddle.to_tensor(label_data) output = paddle.nn.functioanl.smooth_l1_loss(input, label) print(output.numpy()) """ fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'smooth_l1_loss') fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64'], 'smooth_l1_loss') out = huber_loss(input=input, label=label, delta=delta) if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or" " 'none', but received %s, which is not allowed." % reduction) if reduction == 'none': return out elif reduction == 'mean': return fluid.layers.reduce_mean(out) elif reduction == 'sum': return fluid.layers.reduce_sum(out) def margin_ranking_loss(input, other, label, margin=0.0, reduction='mean', name=None): """ This op the calcluate the the margin rank loss between the input, other and label, use the math function as follows. .. math:: margin\_rank\_loss = max(0, -label * (input - other) + margin) If :attr:`reduction` set to ``'mean'``, the reduced mean loss is: .. math:: Out = MEAN(margin\_rank\_loss) If :attr:`reduction` set to ``'sum'``, the reduced sum loss is: .. math:: Out = SUM(margin\_rank\_loss) If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``. Parameters: input(Tensor): the first input tensor, it's data type should be float32, float64. other(Tensor): the second input tensor, it's data type should be float32, float64. label(Tensor): the label value corresponding to input, it's data type should be float32, float64. margin (float, optional): The margin value to add, default value is 0; reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor. Examples: .. code-block:: python import numpy as np import paddle paddle.disable_static() input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32')) other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32')) label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32')) loss = paddle.nn.functional.margin_ranking_loss(input, other, label) print(loss.numpy()) # [0.75] """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but " "received %s, which is not allowed." % reduction) if fluid.framework.in_dygraph_mode(): out = core.ops.elementwise_sub(other, input) out = core.ops.elementwise_mul(out, label) if margin != 0.0: margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype) out = core.ops.elementwise_add(out, margin) out = core.ops.relu(out) if reduction == 'sum': return core.ops.reduce_sum(out, 'reduce_all', True) elif reduction == 'mean': return core.ops.mean(out) return out helper = LayerHelper("margin_ranking_loss", **locals()) fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'margin_rank_loss') fluid.data_feeder.check_variable_and_dtype( other, 'other', ['float32', 'float64'], 'margin_rank_loss') fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64'], 'margin_rank_loss') out = paddle.elementwise_sub(other, input) out = paddle.multiply(out, label) if margin != 0.0: margin_var = out.block.create_var(dtype=out.dtype) paddle.fill_constant([1], out.dtype, margin, out=margin_var) out = paddle.add(out, margin_var) result_out = helper.create_variable_for_type_inference(input.dtype) if reduction == 'none': helper.append_op( type="relu", inputs={"X": out}, outputs={"Out": result_out}) return result_out elif reduction == 'sum': out = paddle.nn.functional.relu(out) attrs = {"dim": [0], "keep_dim": False, "reduce_all": True} helper.append_op( type="reduce_sum", inputs={"X": out}, outputs={"Out": result_out}, attrs=attrs) return result_out elif reduction == 'mean': out = paddle.nn.functional.relu(out) helper.append_op( type="mean", inputs={"X": out}, outputs={"Out": result_out}, attrs={}) return result_out def l1_loss(input, label, reduction='mean', name=None): """ This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows. If `reduction` set to ``'none'``, the loss is: .. math:: Out = \lvert input - label\rvert If `reduction` set to ``'mean'``, the loss is: .. math:: Out = MEAN(\lvert input - label\rvert) If `reduction` set to ``'sum'``, the loss is: .. math:: Out = SUM(\lvert input - label\rvert) Parameters: input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64. label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64. reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If `reduction` is ``'none'``, the unreduced loss is returned; If `reduction` is ``'mean'``, the reduced mean loss is returned. If `reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the L1 Loss of Tensor ``input`` and ``label``. If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` . If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1]. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32") label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32") input = paddle.to_variable(input_data) label = paddle.to_variable(label_data) l1_loss = paddle.nn.functional.l1_loss(input, label) print(l1_loss.numpy()) # [0.35] l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none') print(l1_loss.numpy()) # [[0.20000005 0.19999999] # [0.2 0.79999995]] l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum') print(l1_loss.numpy()) # [1.4] """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but " "received %s, which is not allowed." % reduction) if in_dygraph_mode(): unreduced = _elementwise_op_in_dygraph( input, label, axis=-1, act='abs', op_name='elementwise_sub') if reduction == 'mean': return core.ops.mean(unreduced) elif reduction == 'sum': return core.ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False, 'reduce_all', True) else: return unreduced fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss') fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss') if reduction == 'sum': unreduced = paddle.elementwise_sub(input, label, act='abs') return paddle.sum(unreduced, name=name) elif reduction == 'mean': unreduced = paddle.elementwise_sub(input, label, act='abs') return paddle.mean(unreduced, name=name) else: return paddle.elementwise_sub(input, label, act='abs', name=name) def nll_loss(input, label, weight=None, ignore_index=-100, reduction='mean', name=None): """ This api returns negative log likelihood. See more detail in :ref:`api_nn_loss_NLLLoss` . Parameters: input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes. But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`. The data type is float32, float64. label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`. The data type is int64. weight (Tensor, optional): Weight tensor, a manual rescaling weight given to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise, it treated as if having all ones. the data type is float32, float64, Default is ``'None'``. ignore_index (int64, optional): Specifies a target value that is ignored and does not contribute to the input gradient. reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If `reduction` is ``'mean'``, the reduced mean loss is returned; if `reduction` is ``'sum'``, the reduced sum loss is returned; if `reduction` is ``'none'``, no reduction will be apllied. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: `Tensor`, the value of negative log likelihood loss. Examples: .. code-block:: python import paddle import numpy as np from paddle.nn.functional import nll_loss log_softmax = paddle.nn.LogSoftmax(axis=1) input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ], [0.53331435, 0.07999352, 0.8549948 ], [0.25879037, 0.39530203, 0.698465 ], [0.73427284, 0.63575995, 0.18827209], [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32) label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64) place = paddle.CPUPlace() paddle.disable_static(place) input = paddle.to_variable(input_np) log_out = log_softmax(input) label = paddle.to_variable(label_np) result = nll_loss(log_out, label) print(result.numpy()) # [1.0720209] """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in nll_loss should be 'sum', 'mean' or " "'none', but received %s, which is not allowed." % reduction) input_shape = list(input.shape) input_dims = len(input_shape) if input_dims < 2: raise ValueError('Expected 2 or more dimensions (got {})'.format( input_dims)) n = input_shape[0] c = input_shape[1] if in_dygraph_mode(): if input_dims != 2 and input_dims != 4: input, _ = core.ops.reshape2(input, 'shape', [n, c, 1, -1]) label, _ = core.ops.reshape2(label, 'shape', [n, 1, -1]) out_shape = [n] + input_shape[2:] out, total_weight = core.ops.nll_loss(input, label, weight, 'ignore_index', ignore_index, 'reduction', reduction) if input_dims != 2 and input_dims != 4 and reduction == 'none': out, _ = core.ops.reshape2(out, 'shape', out_shape) return out helper = LayerHelper('nll_loss', **locals()) if input_dims != 2 and input_dims != 4: input = reshape(input, shape=[n, c, 1, -1]) label = reshape(label, shape=[n, 1, -1]) out_shape = [n] + input_shape[2:] fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'nll_loss') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss') inputs = {'X': input, 'Label': label} attrs = {'reduction': reduction, 'ignore_index': ignore_index} if weight is not None: if isinstance(weight, Variable): inputs['Weight'] = weight out = helper.create_variable_for_type_inference(dtype=input.dtype) total_weight = helper.create_variable_for_type_inference(dtype=input.dtype) outputs = {'Out': out, 'Total_weight': total_weight} helper.append_op( type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs) if input_dims != 2 and input_dims != 4 and reduction == 'none': out = reshape(out, shape=out_shape) return out def kl_div(input, label, reduction='mean', name=None): """ This operator calculates the Kullback-Leibler divergence loss between Input(X) and Input(Target). Notes that Input(X) is the log-probability and Input(Target) is the probability. KL divergence loss is calculated as follows: $$l(x, y) = y * (\log(y) - x)$$ While :math:`x` is input and :math:`y` is label. While :attr:`reduction` is :attr:`none`, output loss is in the same shape as input, loss in each point is calculated seperately and no reduction is applied. While :attr:`reduction` is :attr:`mean`, output loss is in shape of [1] and loss value is the mean value of all losses. While :attr:`reduction` is :attr:`sum`, output loss is in shape of [1] and loss value is the sum value of all losses. While :attr:`reduction` is :attr:`batchmean`, output loss is in shape of [1] and loss value is the sum value of all losses divided by batch size. Args: input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64. label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64. reduction (Tensor): Indicate how to average the loss, the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``. If `reduction` is ``'mean'``, the reduced mean loss is returned; If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned; if `reduction` is ``'sum'``, the reduced sum loss is returned; if `reduction` is ``'none'``, no reduction will be apllied. Default is ``'mean'``. name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The KL divergence loss. The data type is same as input tensor Examples: .. code-block:: python import paddle import numpy as np import paddle.nn.functional as F paddle.enable_imperative() shape = (5, 20) input = np.random.uniform(-10, 10, shape).astype('float32') target = np.random.uniform(-10, 10, shape).astype('float32') # 'batchmean' reduction, loss shape will be [N] pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='batchmean') # shape=[5] # 'mean' reduction, loss shape will be [1] pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='mean') # shape=[1] # 'sum' reduction, loss shape will be [1] pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='sum') # shape=[1] # 'none' reduction, loss shape is same with input shape pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='none') # shape=[5, 20] """ if paddle.in_dynamic_mode(): out = core.ops.kldiv_loss(input, label, 'reduction', reduction) return out helper = LayerHelper('kl_div', **locals()) fluid.data_feeder.check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div') fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div') loss = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='kldiv_loss', inputs={'X': input, 'Target': label}, outputs={'Loss': loss}, attrs={'reduction': reduction}) return loss def mse_loss(input, label, reduction='mean', name=None): """ This op accepts input predications and label and returns the mean square error. If :attr:`reduction` is set to ``'none'``, loss is calculated as: .. math:: Out = (input - label)^2 If :attr:`reduction` is set to ``'mean'``, loss is calculated as: .. math:: Out = \operatorname{mean}((input - label)^2) If :attr:`reduction` is set to ``'sum'``, loss is calculated as: .. math:: Out = \operatorname{sum}((input - label)^2) Parameters: input (Tensor): Input tensor, the data type should be float32 or float64. label (Tensor): Label tensor, the data type should be float32 or float64. reduction (string, optional): The reduction method for the output, could be 'none' | 'mean' | 'sum'. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The tensor tensor storing the mean square error difference of input and label. Return type: Tensor. Examples: .. code-block:: python import numpy as np import paddle # static graph mode paddle.enable_static() mse_loss = paddle.nn.loss.MSELoss() input = paddle.data(name="input", shape=[1]) label = paddle.data(name="label", shape=[1]) place = paddle.CPUPlace() input_data = np.array([1.5]).astype("float32") label_data = np.array([1.7]).astype("float32") output = mse_loss(input,label) exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) output_data = exe.run( paddle.static.default_main_program(), feed={"input":input_data, "label":label_data}, fetch_list=[output], return_numpy=True) print(output_data) # [array([0.04000002], dtype=float32)] # dynamic graph mode paddle.disable_static() input = paddle.to_variable(input_data) label = paddle.to_variable(label_data) output = mse_loss(input, label) print(output.numpy()) # [0.04000002] """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', " "but received {}.".format(reduction)) if not paddle.fluid.framework.in_dygraph_mode(): paddle.fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'mse_loss') paddle.fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64'], 'mse_loss') if reduction == 'none': return paddle.fluid.layers.square( paddle.fluid.layers.elementwise_sub(input, label), name=name) elif reduction == 'mean': return paddle.mean( paddle.fluid.layers.square( paddle.fluid.layers.elementwise_sub(input, label)), name=name) else: return paddle.sum(paddle.fluid.layers.square( paddle.fluid.layers.elementwise_sub(input, label)), name=name) def ctc_loss(log_probs, labels, input_lengths, label_lengths, blank=0, reduction='mean'): """ An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc) to compute Connectionist Temporal Classification (CTC) loss. It can be aliased as softmax with CTC, since a native softmax activation is interated to the Warp-CTC library to normalize values for each row of the input tensor. Parameters: log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type must be float32. labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32. input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64. label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64. blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0. reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``. Returns: Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``. Examples: .. code-block:: python # declarative mode import paddle.nn.functional as F import numpy as np import paddle # length of the longest logit sequence max_seq_length = 4 #length of the longest label sequence max_label_length = 3 # number of logit sequences batch_size = 2 # class num class_num = 3 np.random.seed(1) log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04], [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]], [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01], [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]], [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02], [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]], [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01], [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]], [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02], [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32") labels = np.array([[1, 2, 2], [1, 2, 2]]).astype("int32") input_lengths = np.array([5, 5]).astype("int64") label_lengths = np.array([3, 3]).astype("int64") paddle.disable_static() log_probs = paddle.to_variable(log_probs) labels = paddle.to_variable(labels) input_lengths = paddle.to_variable(input_lengths) label_lengths = paddle.to_variable(label_lengths) loss = F.ctc_loss(log_probs, labels, input_lengths, label_lengths, blank=0, reduction='none') print(loss.numpy()) #[3.9179852 2.9076521] loss = F.ctc_loss(log_probs, labels, input_lengths, label_lengths, blank=0, reduction='mean') print(loss.numpy()) #[1.1376063] """ loss_out = fluid.layers.warpctc(log_probs, labels, blank, False, input_lengths, label_lengths) loss_out = fluid.layers.squeeze(loss_out, [-1]) assert reduction in ['mean', 'sum', 'none'] if reduction == 'mean': loss_out = paddle.mean(loss_out / label_lengths) elif reduction == 'sum': loss_out = paddle.sum(loss_out) return loss_out def cross_entropy(input, label, weight=None, ignore_index=-100, reduction='mean'): """ This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``, and ``NLLLoss`` together. It is useful when training a classification problem with ``C`` classes. If provided, the optional argument ``weight`` should be a 1D Variable assigning weight to each of the classes. For predictions label, and target label, the loss is calculated as follows. .. math:: loss_j = -\\text{input[class]} + \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K If weight is not ``None``: .. math:: loss_j = \\text{weight[class]}(-\\text{input[class]} + \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K Parameters: input (Tensor): Input tensor, the data type is float32, float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1. label (Tensor): Label tensor, the data type is int64. Shape is (N), where each value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is (N, D1, D2,..., Dk), k >= 1. weight (Tensor, optional): Weight tensor, a manual rescaling weight given to each class and the shape is (C). It has the same dimensions as class number and the data type is float32, float64. Default is ``'None'``. reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. ignore_index (int64, optional): Specifies a target value that is ignored and does not contribute to the input gradient. Default is ``-100``. Returns: The tensor variable storing the cross_entropy_loss of input and label. Return type: Tensor. Examples: .. code-block:: python import paddle paddle.disable_static() input_data = np.random.random([5, 100]).astype("float64") label_data = np.random.randint(0, 100, size=(5)).astype(np.int64) weight_data = np.random.random([100]).astype("float64") input = paddle.to_tensor(input_data) label = paddle.to_tensor(label_data) weight = paddle.to_tensor(weight_data) loss = paddle.nn.functional.cross_entropy(input=input, label=label, weight=weight) print(loss.numpy()) """ if not in_dygraph_mode(): fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'cross_entropy_loss') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'], 'cross_entropy_loss') if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or" " 'none', but received %s, which is not allowed." % reduction) #step 1. log_softmax log_softmax_out = paddle.nn.functional.log_softmax(input) if weight is not None and not isinstance(weight, Variable): raise ValueError( "The weight' is not a Variable, please convert to Variable.") #step 2. nll_loss input = log_softmax_out helper = LayerHelper('nll_loss', **locals()) dtype = helper.input_dtype(input) if not in_dygraph_mode(): fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'nll_loss') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss') x_shape = list(input.shape) n = x_shape[0] c = x_shape[1] x_dims = len(x_shape) if x_dims < 2: raise ValueError('Expected 2 or more dimensions (got {})'.format( x_dims)) if x_dims != 2 and x_dims != 4: input = reshape(input, shape=[n, c, 1, -1]) label = reshape(label, shape=[n, 1, -1]) out_shape = [n] + x_shape[2:] if not in_dygraph_mode(): fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'nll_loss') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss') inputs = {'X': input, 'Label': label} attrs = {'reduction': reduction, 'ignore_index': ignore_index} if weight is not None: if isinstance(weight, Variable): inputs['Weight'] = weight out = helper.create_variable_for_type_inference(dtype=input.dtype) total_weight = helper.create_variable_for_type_inference(dtype=input.dtype) outputs = {'Out': out, 'Total_weight': total_weight} helper.append_op( type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs) if x_dims != 2 and x_dims != 4 and reduction == 'none': out = reshape(out, shape=out_shape) return out