# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci import paddle.fluid as fluid import paddle class TestElementwisePowOp(OpTest): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(1, 2, [20, 5]).astype("float64"), 'Y': np.random.uniform(1, 2, [20, 5]).astype("float64") } self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} def test_check_output(self): if hasattr(self, 'attrs'): self.check_output(check_eager=False) else: self.check_output(check_eager=True) def test_check_grad_normal(self): if hasattr(self, 'attrs'): self.check_grad(['X', 'Y'], 'Out', check_eager=False) else: self.check_grad(['X', 'Y'], 'Out', check_eager=True) class TestElementwisePowOp_big_shape_1(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(1, 2, [10, 10]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64") } self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} class TestElementwisePowOp_big_shape_2(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(1, 2, [10, 10]).astype("float64"), 'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64") } self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestElementwisePowOp_scalar(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64), 'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64) } self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} class TestElementwisePowOp_tensor(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(0.1, 1, [100]).astype("float64"), 'Y': np.random.uniform(1, 3, [100]).astype("float64") } self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} class TestElementwisePowOp_broadcast_0(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [100]).astype("float64") } self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} class TestElementwisePowOp_broadcast_1(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [100]).astype("float64") } self.attrs = {'axis': 1} self.outputs = { 'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1)) } class TestElementwisePowOp_broadcast_2(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [100]).astype("float64") } self.attrs = {'axis': 0} self.outputs = { 'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)) } class TestElementwisePowOp_broadcast_3(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64") } self.attrs = {'axis': 1} self.outputs = { 'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5, 1)) } class TestElementwisePowOp_broadcast_4(TestElementwisePowOp): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64") } self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} class TestElementwisePowOpInt(OpTest): def setUp(self): self.op_type = "elementwise_pow" self.python_api = paddle.pow self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])} self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])} def test_check_output(self): if hasattr(self, 'attrs'): self.check_output(check_eager=False) else: self.check_output(check_eager=True) class TestElementwisePowGradOpInt(unittest.TestCase): def setUp(self): self.x = np.asarray([1, 3, 6]) self.y = np.asarray([1, 1, 1]) self.res = self.x**self.y # dout = 1 self.grad_res = np.asarray([1, 1, 1]) # dx = dout * y * pow(x, y-1) self.grad_x = self.grad_res * self.y * (self.x **(self.y - 1)).astype("int") # dy = dout * log(x) * pow(x, y) self.grad_y = (self.grad_res * np.log(self.x) * (self.x**self.y)).astype("int") print(self.grad_res, self.grad_x, self.grad_y) def test_grad(self): fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) places = [fluid.CPUPlace()] if fluid.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: with fluid.dygraph.guard(place): x = fluid.dygraph.to_variable(self.x, zero_copy=False) y = fluid.dygraph.to_variable(self.y, zero_copy=False) print(x, y) x.stop_gradient = False y.stop_gradient = False res = x**y res.backward() self.assertTrue(np.array_equal(res.gradient(), self.grad_res)) self.assertTrue(np.array_equal(x.gradient(), self.grad_x)) self.assertTrue(np.array_equal(y.gradient(), self.grad_y)) fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False}) if __name__ == '__main__': unittest.main()