// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/batch_norm.h" #include #include #include #include #include #include "paddle/fluid/inference/anakin/convert/helper.h" namespace paddle { namespace inference { namespace anakin { template void BatchNormOpConverter::operator()( const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); PADDLE_ENFORCE_EQ(op_desc.Output("Y").size(), 1); std::map inputs; for (auto k : {"X", "Scale", "Bias", "Mean", "Variance"}) { PADDLE_ENFORCE_EQ(op_desc.Input(k).size(), 1UL); } auto input = op_desc.Input("X").front(); auto output = op_desc.Output("Y").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Y").front(); auto epsilon = boost::get(op_desc.GetAttr("epsilon")); auto bn_op_name = op_name + ":bn"; auto bn_output = bn_op_name + "_output"; this->engine_->AddOp(bn_op_name, "BatchNorm", {input}, {bn_output}); this->engine_->AddOpAttr(bn_op_name, "epsilon", epsilon); this->engine_->AddOpAttr(bn_op_name, "momentum", static_cast(1.0)); auto scale_op_name = op_name + ":scale"; this->engine_->AddOp(scale_op_name, "Scale", {bn_output}, {output}); this->engine_->AddOpAttr(scale_op_name, "axis", 1); this->engine_->AddOpAttr(scale_op_name, "num_axes", 1); this->engine_->AddOpAttr(scale_op_name, "bias_term", true); auto *mean_v = scope.FindVar(op_desc.Input("Mean").front()); PADDLE_ENFORCE_NOT_NULL(mean_v); auto weight1 = pblock_from_var(*mean_v, this->engine_); this->engine_->AddOpAttr(bn_op_name, "weight_1", *weight1); auto *variance_v = scope.FindVar(op_desc.Input("Variance").front()); PADDLE_ENFORCE_NOT_NULL(variance_v); auto weight2 = pblock_from_var(*variance_v, this->engine_); this->engine_->AddOpAttr(bn_op_name, "weight_2", *weight2); auto *weight3 = pblock_from_vector( std::vector({1}), this->engine_); this->engine_->AddOpAttr(bn_op_name, "weight_3", *weight3); auto *scale_v = scope.FindVar(op_desc.Input("Scale").front()); PADDLE_ENFORCE_NOT_NULL(scale_v); auto scale = pblock_from_var(*scale_v, this->engine_); this->engine_->AddOpAttr(scale_op_name, "weight_1", *scale); auto *bias_v = scope.FindVar(op_desc.Input("Bias").front()); PADDLE_ENFORCE_NOT_NULL(bias_v); auto bias = pblock_from_var(*bias_v, this->engine_); this->engine_->AddOpAttr(scale_op_name, "weight_2", *bias); } } // namespace anakin } // namespace inference } // namespace paddle #ifdef PADDLE_WITH_CUDA using bn_nv_fp32 = ::paddle::inference::anakin::BatchNormOpConverter< ::anakin::saber::NV, ::anakin::Precision::FP32>; using bn_nv_int8 = ::paddle::inference::anakin::BatchNormOpConverter< ::anakin::saber::NV, ::anakin::Precision::INT8>; REGISTER_CUDA_ANAKIN_OP_CONVERTER(batch_norm, bn_nv_fp32); REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(batch_norm, bn_nv_int8); #endif using bn_cpu_fp32 = ::paddle::inference::anakin::BatchNormOpConverter< ::anakin::saber::X86, ::anakin::Precision::FP32>; using bn_cpu_int8 = ::paddle::inference::anakin::BatchNormOpConverter< ::anakin::saber::X86, ::anakin::Precision::INT8>; REGISTER_CPU_ANAKIN_OP_CONVERTER(batch_norm, bn_cpu_fp32); REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(batch_norm, bn_cpu_int8);