// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/infershape/unary.h" #include "paddle/pten/kernels/cuda/manipulation.h" #include "paddle/pten/kernels/cuda/utils.h" namespace pten { template void Flatten(const CUDAContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out) { auto out_dims = out->dims(); pten::Copy(dev_ctx, x, out); out->Resize(out_dims); } // TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate // Output Tensor, // is there a more flexible way to deal with this case? template void FlattenWithXShape(const CUDAContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out, DenseTensor* xshape) { Flatten(dev_ctx, x, start_axis, stop_axis, out); const auto& in_dims = x.meta().dims; std::vector xshape_dims(in_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < in_dims.size(); ++i) { xshape_dims[i + 1] = in_dims[i]; } xshape->Resize(paddle::framework::make_ddim(xshape_dims)); xshape->set_lod(x.lod()); } } // namespace pten // TODO(chenweihang): replace by better impl PT_REGISTER_MODULE(ManipulationCUDA); using float16 = paddle::platform::float16; // TODO(yuanrisheng): "flatten_contiguous_range" is compatible with old kernel // architecture, kernel_name should be "flatten". PT_REGISTER_KERNEL("flatten_contiguous_range", CUDA, ANY, pten::Flatten, float, float16, double, uint8_t, int8_t, int, int64_t) {} PT_REGISTER_KERNEL("flatten_contiguous_range.mid", CUDA, ANY, pten::FlattenWithXShape, float, double, uint8_t, int8_t, int, int64_t) {}