# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.framework as framework class TestEyeOp(OpTest): def setUp(self): ''' Test eye op with specified shape ''' self.op_type = "eye" self.inputs = {} self.attrs = { 'num_rows': 219, 'num_columns': 319, 'dtype': framework.convert_np_dtype_to_dtype_(np.int32) } self.outputs = {'Out': np.eye(219, 319, dtype=np.int32)} def test_check_output(self): self.check_output() class TestEyeOp1(OpTest): def setUp(self): ''' Test eye op with default parameters ''' self.op_type = "eye" self.inputs = {} self.attrs = {'num_rows': 50} self.outputs = {'Out': np.eye(50, dtype=float)} def test_check_output(self): self.check_output() class TestEyeOp2(OpTest): def setUp(self): ''' Test eye op with specified shape ''' self.op_type = "eye" self.inputs = {} self.attrs = {'num_rows': 99, 'num_columns': 1} self.outputs = {'Out': np.eye(99, 1, dtype=float)} def test_check_output(self): self.check_output() class API_TestTensorEye(unittest.TestCase): def test_out(self): with paddle.program_guard(paddle.Program()): data = paddle.eye(10) place = fluid.CPUPlace() exe = paddle.Executor(place) result, = exe.run(fetch_list=[data]) expected_result = np.eye(10, dtype="float32") self.assertEqual((result == expected_result).all(), True) with paddle.program_guard(paddle.Program()): data = paddle.eye(10, num_columns=7, dtype="float64") place = paddle.CPUPlace() exe = paddle.Executor(place) result, = exe.run(fetch_list=[data]) expected_result = np.eye(10, 7, dtype="float64") self.assertEqual((result == expected_result).all(), True) with paddle.program_guard(paddle.Program()): data = paddle.eye(10, dtype="int64") place = paddle.CPUPlace() exe = paddle.Executor(place) result, = exe.run(fetch_list=[data]) expected_result = np.eye(10, dtype="int64") self.assertEqual((result == expected_result).all(), True) with paddle.imperative.guard(): out = paddle.eye(10, dtype="int64") expected_result = np.eye(10, dtype="int64") self.assertEqual((out.numpy() == expected_result).all(), True) with paddle.imperative.guard(): batch_shape = [2] out = fluid.layers.eye(10, 10, dtype="int64", batch_shape=batch_shape) result = np.eye(10, dtype="int64") expected_result = [] for index in reversed(batch_shape): tmp_result = [] for i in range(index): tmp_result.append(result) result = tmp_result expected_result = np.stack(result, axis=0) self.assertEqual(out.numpy().shape == np.array(expected_result).shape, True) self.assertEqual((out.numpy() == expected_result).all(), True) with paddle.imperative.guard(): batch_shape = [3, 2] out = fluid.layers.eye(10, 10, dtype="int64", batch_shape=batch_shape) result = np.eye(10, dtype="int64") expected_result = [] for index in reversed(batch_shape): tmp_result = [] for i in range(index): tmp_result.append(result) result = tmp_result expected_result = np.stack(result, axis=0) self.assertEqual(out.numpy().shape == np.array(expected_result).shape, True) self.assertEqual((out.numpy() == expected_result).all(), True) def test_errors(self): with paddle.program_guard(paddle.Program()): def test_num_rows_type_check(): paddle.eye(-1, dtype="int64") self.assertRaises(TypeError, test_num_rows_type_check) def test_num_columns_type_check(): paddle.eye(10, num_columns=5.2, dtype="int64") self.assertRaises(TypeError, test_num_columns_type_check) def test_num_columns_type_check(): paddle.eye(10, num_columns=10, dtype="int8") self.assertRaises(TypeError, test_num_columns_type_check) if __name__ == "__main__": unittest.main()