// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/softmax_grad_kernel.h" #include "paddle/phi/backends/onednn/onednn_context.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/place.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void SoftmaxGradKernel(const Context& dev_ctx, const DenseTensor& out, const DenseTensor& out_grad, int axis, DenseTensor* x_grad) { funcs::SoftmaxOneDNNHandler handler( dev_ctx.GetEngine(), dev_ctx.GetPlace(), axis, &out, &out_grad); auto dst_memory_p = handler.AcquireDstMemory(&out); auto diff_dst_memory_p = handler.AcquireDiffDstMemory(&out_grad); auto diff_src_memory_p = handler.AcquireDiffSrcMemory(x_grad); auto softmax_bwd_p = handler.AcquireBackwardPrimitive(); auto& astream = OneDNNContext::tls().get_stream(); softmax_bwd_p->execute(astream, {{DNNL_ARG_DST, *dst_memory_p}, {DNNL_ARG_DIFF_DST, *diff_dst_memory_p}, {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}}); astream.wait(); x_grad->set_mem_desc(diff_src_memory_p->get_desc()); } } // namespace phi PD_REGISTER_KERNEL( softmax_grad, OneDNN, ONEDNN, phi::SoftmaxGradKernel, float) {}