// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/concat_grad_kernel.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/concat_funcs.h" namespace phi { template void ConcatGradKernel(const Context& dev_ctx, const std::vector& x, const DenseTensor& out_grad, const Scalar& axis_scalar, std::vector x_grad) { const auto& onednn_engine = dev_ctx.GetEngine(); auto& astream = OneDNNContext::tls().get_stream(); for (size_t i = 0; i < x_grad.size(); ++i) { if (x_grad[i] != nullptr) { x_grad[i]->set_lod(x[i]->lod()); } } int axis = axis_scalar.to(); auto out_grad_vec_dims = vectorize(out_grad.dims()); axis = funcs::ComputeAxis(axis, out_grad_vec_dims.size()); std::vector offset(out_grad_vec_dims.size(), 0); dnnl::memory::data_type out_grad_type = funcs::ToOneDNNDataType(out_grad.dtype()); funcs::ReorderOneDNNHandler reorder_handler( out_grad_vec_dims, out_grad.dtype(), out_grad_type, onednn_engine); auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory( out_grad.mem_desc(), funcs::to_void_cast(out_grad.data())); for (size_t i = 0; i < x_grad.size(); ++i) { if (x_grad[i]->numel() != 0UL) { auto x_grad_vec_dims = vectorize(x_grad[i]->dims()); auto slice_mem_p = reorder_handler.AcquireSubmemory( x_grad_vec_dims, offset, reorder_src_memory_p); auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory( x_grad[i], x_grad_vec_dims, funcs::GetPlainOneDNNFormat(x_grad_vec_dims.size()), dev_ctx.GetPlace()); auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p); reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p); offset[axis] += x_grad[i]->dims()[axis]; x_grad[i]->set_mem_desc(reorder_dst_memory_p->get_desc()); } } astream.wait(); } } // namespace phi PD_REGISTER_KERNEL(concat_grad, OneDNN, ONEDNN, phi::ConcatGradKernel, float, phi::dtype::bfloat16) {}