// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/data_balance_op_handle.h" #include #include "paddle/fluid/framework/details/container_cast.h" namespace paddle { namespace framework { namespace details { #ifdef PADDLE_WITH_CUDA DataBalanceOpHandle::DataBalanceOpHandle( const std::vector &local_scopes, const std::vector &places, const platform::NCCLContextMap *ctxs) : local_scopes_(local_scopes), places_(places) { if (ctxs) { for (auto &p : places_) { this->dev_ctxes_[p] = ctxs->DevCtx(p); } } } #else DataBalanceOpHandle::DataBalanceOpHandle( const std::vector &local_scopes, const std::vector &places) : local_scopes_(local_scopes), places_(places) {} #endif std::string DataBalanceOpHandle::Name() const { return "data balance"; } std::vector> DataBalanceOpHandle::GetBalancePlan( const std::vector &device_sizes) { int device_num = device_sizes.size(); int total_size = 0; int empty_num = 0; std::vector> size_device_vec; size_device_vec.reserve(device_num); for (int i = 0; i < device_num; ++i) { if (device_sizes[i] == 0) { ++empty_num; } total_size += device_sizes[i]; size_device_vec.push_back({{device_sizes[i], i}}); } std::vector> res; if (empty_num == 0) { // No need to do data balance. return res; } if (total_size < device_num) { // No enough data. PADDLE_THROW("There is no next data."); } std::sort(size_device_vec.begin(), size_device_vec.end(), [](const std::array &a, const std::array &b) { return a[0] > b[0]; }); int expected_device_size = total_size / device_num; int src_idx = 0; for (int dst_idx = device_num - empty_num; dst_idx < device_num; ++dst_idx) { if (size_device_vec[src_idx][0] <= expected_device_size) { ++src_idx; PADDLE_ENFORCE_LT(src_idx, device_num - empty_num); } size_device_vec[src_idx][0] -= expected_device_size; size_device_vec[dst_idx][0] += expected_device_size; res.push_back({{size_device_vec[src_idx][1], size_device_vec[dst_idx][1], expected_device_size}}); } return res; } void DataBalanceOpHandle::RunImpl() { if (places_.size() == 1) { return; } auto in_var_handles = DynamicCast(inputs_); auto out_var_handles = DynamicCast(outputs_); PADDLE_ENFORCE(in_var_handles.size() % places_.size() == 0); PADDLE_ENFORCE_EQ( in_var_handles.size(), out_var_handles.size(), "The NoDummyInputSize and NoDummyOutputSize should be equal."); int data_num = in_var_handles.size() / places_.size(); WaitInputVarGenerated(); std::vector> lod_tensors(data_num); std::vector device_sizes; for (int i = 0; i < static_cast(in_var_handles.size()); ++i) { PADDLE_ENFORCE_EQ(in_var_handles[i]->name_, out_var_handles[i]->name_, "The name of input and output should be equal."); int place_idx = i / data_num; int data_idx = i % data_num; auto *local_scope = local_scopes_[place_idx]->FindVar(kLocalExecScopeName)->Get(); auto *tensor_var = local_scope->FindVar(in_var_handles[i]->name_); PADDLE_ENFORCE(tensor_var->IsType()); auto *tensor = tensor_var->GetMutable(); PADDLE_ENFORCE(places_[place_idx] == tensor->place()); lod_tensors[data_idx].push_back(tensor); int ins_size = tensor->lod().empty() ? tensor->dims()[0] : tensor->NumElements(); if (data_idx == 0) { device_sizes.emplace_back(ins_size); } else { PADDLE_ENFORCE_EQ(ins_size, device_sizes.at(place_idx)); } } const auto &balance_plan = GetBalancePlan(device_sizes); for (const auto &trans : balance_plan) { for (int data_idx = 0; data_idx < data_num; ++data_idx) { LoDTensor *src_tensor = lod_tensors[data_idx][trans[0]]; LoDTensor *dst_tensor = lod_tensors[data_idx][trans[1]]; int trans_ins_size = trans[2]; LoD src_lod = src_tensor->lod(); int src_ins_size = src_lod.empty() ? src_tensor->dims()[0] : src_tensor->NumElements(); int cut_point = src_ins_size - trans_ins_size; if (!src_lod.empty()) { for (auto &level : src_lod) { cut_point = level[cut_point]; } } TensorCopySync(src_tensor->Slice(cut_point, src_tensor->dims()[0]), dst_tensor->place(), dst_tensor); src_tensor->ShareDataWith(src_tensor->Slice(0, cut_point)); if (!src_lod.empty()) { dst_tensor->set_lod(SliceInLevel( src_lod, 0, src_ins_size - trans_ins_size, src_ins_size)); src_tensor->set_lod( SliceInLevel(src_lod, 0, 0, src_ins_size - trans_ins_size)); } } } } } // namespace details } // namespace framework } // namespace paddle