/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_XPU #include "paddle/fluid/operators/truncated_gaussian_random_op.h" #include #include #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template class XPUTruncatedGaussianRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { float mean = context.Attr("mean"); float std = context.Attr("std"); auto* tensor = context.Output("Out"); T* data = tensor->mutable_data(context.GetPlace()); std::uniform_real_distribution dist(std::numeric_limits::min(), 1.0); TruncatedNormal truncated_normal(mean, std); int64_t size = tensor->numel(); unsigned int seed = static_cast(context.Attr("seed")); // TODO(pangyoki): implement GetXPURandomEngine to set different seeds on // corresponding XPU device. auto engine = framework::GetCPURandomEngine(seed); std::unique_ptr data_cpu(new T[size]); for (int64_t i = 0; i < size; ++i) { data_cpu[i] = truncated_normal(dist(*engine)); } memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), data, platform::CPUPlace(), reinterpret_cast(data_cpu.get()), size * sizeof(T)); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_XPU_KERNEL(truncated_gaussian_random, ops::XPUTruncatedGaussianRandomKernel< paddle::platform::XPUDeviceContext, float>); #endif // PADDLE_WITH_XPU