/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/sparse/coalesce_kernel.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/visit_type.h" #include "paddle/phi/kernels/funcs/index_impl.cu.h" #include "paddle/phi/kernels/funcs/sparse/flatten_indices.cu.h" #include "paddle/phi/kernels/funcs/sparse/scatter.cu.h" #include "paddle/phi/kernels/funcs/sparse/utils.cu.h" namespace phi { namespace sparse { template void CoalesceCooGPUKernel(const GPUContext& dev_ctx, const SparseCooTensor& x, SparseCooTensor* out) { const DenseTensor& x_indices = x.indices(); const DenseTensor& x_values = x.values(); DenseTensor out_indices = phi::EmptyLike(dev_ctx, x_indices); DenseTensor out_values = phi::EmptyLike(dev_ctx, x_values); const int64_t nnz = x.nnz(); const int64_t sparse_dim = x.indices().dims()[0]; std::vector sparse_offsets(sparse_dim); phi::funcs::sparse::CalcOffsetsPerDim( x.dims(), sparse_dim, sparse_offsets.data()); DenseTensorMeta sparse_offset_meta( paddle::experimental::CppTypeToDataType::Type(), {sparse_dim}, DataLayout::NCHW); DenseTensor d_sparse_offsets = phi::Empty(dev_ctx, std::move(sparse_offset_meta)); DenseTensor indexs = phi::Empty( dev_ctx, DenseTensorMeta(x_indices.dtype(), {nnz}, x_indices.layout())); IntT* indexs_ptr = indexs.data(); phi::backends::gpu::GpuMemcpyAsync(d_sparse_offsets.data(), sparse_offsets.data(), sizeof(IntT) * sparse_dim, gpuMemcpyHostToDevice, dev_ctx.stream()); // 1. flatten indices auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, nnz, 1); phi::funcs::sparse::FlattenIndicesKernel<<>>( x.indices().data(), d_sparse_offsets.data(), indexs.numel(), sparse_dim, indexs_ptr); // 2. get the address of each non-zero values const T* x_values_ptr = x_values.data(); const int64_t stride = x.dims().size() == sparse_dim ? 1 : x.values().dims()[1]; DenseTensor values_indexs = phi::Empty( dev_ctx, DenseTensorMeta(DataType::INT32, {nnz}, DataLayout::NCHW)); int* values_indexs_ptr = values_indexs.data(); DenseTensor public_indexs = phi::EmptyLike(dev_ctx, values_indexs); // values_indexs = [0,1,2,,,nnz-1] phi::IndexKernel>( dev_ctx, &values_indexs, kps::IdentityFunctor()); phi::IndexKernel>( dev_ctx, &public_indexs, kps::IdentityFunctor()); // 3. sort (indices, values index) #ifdef PADDLE_WITH_HIP thrust::sort_by_key(thrust::hip::par.on(dev_ctx.stream()), #else thrust::sort_by_key(thrust::cuda::par.on(dev_ctx.stream()), #endif indexs_ptr, indexs_ptr + nnz, values_indexs_ptr); // 4. unique index thrust::pair new_end = #ifdef PADDLE_WITH_HIP thrust::unique_by_key(thrust::hip::par.on(dev_ctx.stream()), #else thrust::unique_by_key(thrust::cuda::par.on(dev_ctx.stream()), #endif indexs_ptr, indexs_ptr + nnz, public_indexs.data()); phi::funcs::sparse::DistanceKernel<<<1, 1, 0, dev_ctx.stream()>>>( indexs_ptr, new_end.first, out_indices.data()); IntT out_nnz = 0; phi::backends::gpu::GpuMemcpyAsync(&out_nnz, out_indices.data(), sizeof(IntT), gpuMemcpyDeviceToHost, dev_ctx.stream()); dev_ctx.Wait(); out_indices.Resize({x_indices.dims()[0], out_nnz}); if (out_values.dims().size() == 1) { out_values.Resize(phi::make_ddim({out_nnz})); } else { out_values.Resize(phi::make_ddim({out_nnz, x_values.dims()[1]})); } // 5. scatter the values const int VecSize = VecBytes / sizeof(T); if (stride % VecSize == 0) { config = phi::backends::gpu::GetGpuLaunchConfig1D( dev_ctx, nnz * stride / VecSize, 1); phi::funcs::sparse::ScatterKernel <<>>(x_values_ptr, public_indexs.data(), values_indexs_ptr, out_nnz, nnz, stride, out_values.data()); } else { config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, nnz * stride, 1); phi::funcs::sparse::ScatterKernel <<>>(x_values_ptr, public_indexs.data(), values_indexs_ptr, out_nnz, nnz, stride, out_values.data()); } // 6. convert index to coordinate Dim const_dims; for (int i = 0; i < x.dims().size(); i++) { const_dims[i] = x.dims()[i]; } config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, out_nnz, 1); phi::funcs::sparse::IndexToCoordinateKernel<<>>( indexs_ptr, const_dims, out_nnz, sparse_dim, out_indices.data()); out->SetMember(out_indices, out_values, x.dims(), true); out->SetIndicesDict(x.GetIndicesDict()); } template void CoalesceCooKernel(const Context& dev_ctx, const SparseCooTensor& x, SparseCooTensor* out) { PD_VISIT_BASE_INTEGRAL_TYPES( x.indices().dtype(), "CoalesceCooGPUKernel", ([&] { CoalesceCooGPUKernel(dev_ctx, x, out); })); } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(coalesce_coo, GPU, ALL_LAYOUT, phi::sparse::CoalesceCooKernel, float, double, phi::dtype::float16, uint8_t, int16_t, int, int64_t) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); }