# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.utils.download import get_weights_path_from_url __all__ = [] model_urls = { 'mobilenetv2_1.0': ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams', '0340af0a901346c8d46f4529882fb63d') } def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, norm_layer=nn.BatchNorm2D): padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2D( in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias_attr=False), norm_layer(out_planes), nn.ReLU6()) class InvertedResidual(nn.Layer): def __init__(self, inp, oup, stride, expand_ratio, norm_layer=nn.BatchNorm2D): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: layers.append( ConvBNReLU( inp, hidden_dim, kernel_size=1, norm_layer=norm_layer)) layers.extend([ ConvBNReLU( hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer), nn.Conv2D( hidden_dim, oup, 1, 1, 0, bias_attr=False), norm_layer(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Layer): def __init__(self, scale=1.0, num_classes=1000, with_pool=True): """MobileNetV2 model from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_. Args: scale (float): scale of channels in each layer. Default: 1.0. num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 1000. with_pool (bool): use pool before the last fc layer or not. Default: True. Examples: .. code-block:: python from paddle.vision.models import MobileNetV2 model = MobileNetV2() """ super(MobileNetV2, self).__init__() self.num_classes = num_classes self.with_pool = with_pool input_channel = 32 last_channel = 1280 block = InvertedResidual round_nearest = 8 norm_layer = nn.BatchNorm2D inverted_residual_setting = [ [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] input_channel = _make_divisible(input_channel * scale, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, scale), round_nearest) features = [ ConvBNReLU( 3, input_channel, stride=2, norm_layer=norm_layer) ] for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * scale, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append( block( input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer)) input_channel = output_channel features.append( ConvBNReLU( input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer)) self.features = nn.Sequential(*features) if with_pool: self.pool2d_avg = nn.AdaptiveAvgPool2D(1) if self.num_classes > 0: self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes)) def forward(self, x): x = self.features(x) if self.with_pool: x = self.pool2d_avg(x) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.classifier(x) return x def _mobilenet(arch, pretrained=False, **kwargs): model = MobileNetV2(**kwargs) if pretrained: assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( arch) weight_path = get_weights_path_from_url(model_urls[arch][0], model_urls[arch][1]) param = paddle.load(weight_path) model.load_dict(param) return model def mobilenet_v2(pretrained=False, scale=1.0, **kwargs): """MobileNetV2 Args: pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. scale: (float): scale of channels in each layer. Default: 1.0. Examples: .. code-block:: python from paddle.vision.models import mobilenet_v2 # build model model = mobilenet_v2() # build model and load imagenet pretrained weight # model = mobilenet_v2(pretrained=True) # build mobilenet v2 with scale=0.5 model = mobilenet_v2(scale=0.5) """ model = _mobilenet( 'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs) return model