# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn from . import models # noqa: F401 from . import transforms # noqa: F401 from . import datasets # noqa: F401 from . import ops # noqa: F401 from .image import set_image_backend # noqa: F401 from .image import get_image_backend # noqa: F401 from .image import image_load # noqa: F401 from .models import LeNet as models_LeNet import paddle.utils.deprecated as deprecated __all__ = [ #noqa 'set_image_backend', 'get_image_backend', 'image_load' ] class LeNet(models_LeNet): """LeNet model from `"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_ Args: num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 10. Examples: .. code-block:: python from paddle.vision.models import LeNet model = LeNet() """ @deprecated( since="2.0.0", update_to="paddle.vision.models.LeNet", level=1, reason="Please use new API in models, paddle.vision.LeNet will be removed in future" ) def __init__(self, num_classes=10): super(LeNet, self).__init__(num_classes=10) self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2D( 1, 6, 3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2D(2, 2), nn.Conv2D( 6, 16, 5, stride=1, padding=0), nn.ReLU(), nn.MaxPool2D(2, 2)) if num_classes > 0: self.fc = nn.Sequential( nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear(84, num_classes))