import ps_pb2 as pslib class Server(object): def __init__(self): pass class Worker(object): def __init__(self): pass class DownpourServer(Server): def __init__(self): self.server_ = pslib.ServerParameter() def add_sparse_table(self, table_id, learning_rate, slot_key_vars, slot_value_var): table = self.server_.downpour_server_param.downpour_table_param.add() table.table_id = table_id table.type = pslib.PS_SPARSE_TABLE table.accessor.accessor_class = "DownpourFeatureValueAccessor" table.accessor.dense_sgd_param.adam.learning_rate = learning_rate table.accessor.fea_dim = abs(reduce(lambda x, y: x * y, slot_value_var[0].shape, 1)) def add_dense_table(self, table_id, learning_rate, param_var, grad_var): table = self.server_.downpour_server_param.downpour_table_param.add() table.table_id = table_id table.type = pslib.PS_DENSE_TABLE table.accessor.accessor_class = "DownpourDenseValueAccessor" table.accessor.sparse_sgd_param.learning_rate = learning_rate fea_dim = 0 for param in param_var: fea_dim += reduce(lambda x, y: x * y, param.shape, 1) table.accessor.fea_dim = fea_dim def get_desc(self): return self.server_ class DownpourWorker(Worker): def __init__(self, window): self.window = window self.worker_ = pslib.DownpourTrainerParameter() self.worker_.pull_dense_per_batch = window self.worker_.push_dense_per_batch = window def add_sparse_table(self, table_id, learning_rate, slot_key_vars, slot_value_vars): table = self.worker_.sparse_table.add() table.table_id = table_id table.slot_key.extend( [var.name for var in slot_key_vars]) table.slot_value.extend( [var.name for var in slot_value_vars]) table.slot_gradient.extend( [var.name + "@GRAD" for var in slot_value_vars]) def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars): table = self.worker_.dense_table.add() table.table_id = table_id table.dense_variable_name.extend([p.name for p in param_vars]) table.dense_gradient_variable_name.extend([g.name for g in grad_vars]) def get_desc(self): return self.worker_