/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include // NOLINT #include #include #include // NOLINT #include #include "paddle/fluid/framework/data_feed.h" #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #ifdef PADDLE_WITH_PSLIB #include #endif namespace paddle { namespace framework { void CreateTensor(Variable* var, proto::VarType::Type var_type); #ifdef PADDLE_WITH_PSLIB static const uint32_t MAX_FEASIGN_NUM = 1000 * 100 * 100; struct AsyncWorkerParamConfig { int slot_dim; int fea_dim; int32_t tmp_push_dense_wait_times; int32_t tmp_push_sparse_wait_times; std::vector skip_op; std::map> dense_variable_name; std::map> dense_gradient_variable_name; std::vector dense_table_id; // fea_dim for each dense table std::vector dense_table_size; std::vector sparse_table_id; std::map> slot_input_vec; std::map> gradient_var; std::map slot_alias_to_table; }; struct DensePullThreadParam { std::shared_ptr ps_client; int threshold; int training_thread_num; Scope* root_scope; std::map>* dense_params; int sleep_time_ms = 2; }; class DensePullThread { public: explicit DensePullThread(const DensePullThreadParam& param) : _running(false) { _ps_client = param.ps_client; _threshold = param.threshold; _thread_num = param.training_thread_num; _root_scope = param.root_scope; _sleep_time_ms = param.sleep_time_ms; for (auto& t : *param.dense_params) { _dense_variable_name[t.first].insert(_dense_variable_name[t.first].end(), t.second.begin(), t.second.end()); _training_versions[t.first].resize(_thread_num, 0); _last_versions[t.first] = 0; _current_version[t.first] = 0; } } int start(); void stop() { if (_running) { _running = false; _t.join(); } } void increase_thread_version(int thread_id, uint64_t table_id); void reset_thread_version(uint64_t table_id); std::future pull_dense(uint64_t table_id); void pull_dense2(uint64_t table_id); void wait_all(); private: void run(); bool check_update_param(uint64_t table_id); private: std::shared_ptr _ps_client; int _thread_num; int _threshold; int _sleep_time_ms; Scope* _root_scope; bool _running; std::map _last_versions; std::map _current_version; std::mutex _mutex_for_version; std::map> _training_versions; std::map> _dense_variable_name; std::thread _t; std::vector<::std::future> _pull_dense_status; std::map> _regions; uint32_t _pull_dense_fail_times = 0; std::vector _base_norm_param; std::vector _mean; std::vector _scale; float _squared_sum_epsilon = 1e-4; std::mutex _mutex_for_mean_scale; float _total_batch_num = 0; }; #endif class ExecutorThreadWorker { public: ExecutorThreadWorker() : thread_id_(-1), root_scope_(NULL), thread_scope_(NULL), debug_(false) {} virtual ~ExecutorThreadWorker() {} void CreateThreadResource(const framework::ProgramDesc& program, const paddle::platform::Place& place); void SetThreadId(int tid); void SetDebug(const bool debug) { debug_ = debug; } void SetRootScope(Scope* g_scope); // set cpu device in this function // cpu binding is used by default void SetDevice(); // since we read data into memory that can not be accessed by program // we need to bind memory of data with corresponding variables in program // this function should be called after data feed is set void BindingDataFeedMemory(); // set data feed declared in executor void SetDataFeed(const std::shared_ptr& datafeed); // A multi-thread training function virtual void TrainFiles(); // set fetch variable names from python interface assigned by users void SetFetchVarNames(const std::vector& fetch_var_names); #ifdef PADDLE_WITH_PSLIB virtual void SetPSlibPtr( std::shared_ptr pslib_ptr) {} virtual void SetPullDenseThread(std::shared_ptr dpt) {} virtual void SetParamConfig(AsyncWorkerParamConfig* param_config) {} #endif private: void CreateThreadScope(const framework::ProgramDesc& program); void CreateThreadOperators(const framework::ProgramDesc& program); void SetMainProgram(const ProgramDesc& main_program_desc); void SetPlace(const paddle::platform::Place& place); protected: // thread index std::shared_ptr thread_reader_; // shared queue, thread buffer int thread_id_; // operator name std::vector op_names_; // thread level, local operators for forward and backward std::vector ops_; // main program for training std::unique_ptr main_program_; // execution place platform::Place place_; // root scope for model parameters Scope* root_scope_; // a thread scope, father scope is global score which is shared Scope* thread_scope_; std::vector fetch_var_names_; std::vector> fetch_values_; bool debug_; }; #ifdef PADDLE_WITH_PSLIB class AsyncExecutorThreadWorker : public ExecutorThreadWorker { public: AsyncExecutorThreadWorker() {} virtual ~AsyncExecutorThreadWorker() {} void SetPSlibPtr(std::shared_ptr pslib_ptr); void SetPullDenseThread(std::shared_ptr dpt); void SetParamConfig(AsyncWorkerParamConfig* param_config); void TrainFiles(); void TrainOneNetwork(); void PrepareParams(); void UpdateParams(); void PullSparse(int table_id); void FillSparse(int table_id); void PushSparse(int table_id); void PushDense(int table_id); void check_pull_push_memory(const std::vector& features, std::vector* push_g, int dim); void check_pull_push_memory(const std::vector& features, std::vector>* push_g, int dim); void collect_feasign_info(int table_id); private: struct FeasignInfo { uint32_t slot; uint32_t ins; int64_t label; }; std::map> _features; std::map> _fea_info; std::map>> _feature_value; std::map>> _feature_push_value; std::shared_ptr _pslib_ptr; std::shared_ptr _pull_dense_thread; std::vector<::std::future> _pull_sparse_status; std::vector<::std::future> _pull_dense_status; std::vector<::std::future> _push_sparse_status; std::vector<::std::future> _push_dense_status; AsyncWorkerParamConfig* _param_config; }; #endif } // namespace framework } // namespace paddle