# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import pickle import unittest import numpy as np import paddle from paddle.static import InputSpec class LinearNet(paddle.nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear = paddle.nn.Linear(128, 10) def forward(self, x): return self._linear(x) class Logic(paddle.nn.Layer): def __init__(self): super(Logic, self).__init__() def forward(self, x, y, z): if z: return x else: return y class TestExportWithTensor(unittest.TestCase): def setUp(self): self.x_spec = paddle.static.InputSpec( shape=[None, 128], dtype='float32') def test_with_tensor(self): model = LinearNet() paddle.onnx.export(model, 'linear_net', input_spec=[self.x_spec]) class TestExportWithTensor1(unittest.TestCase): def setUp(self): self.x = paddle.to_tensor(np.random.random((1, 128))) def test_with_tensor(self): model = LinearNet() paddle.onnx.export(model, 'linear_net', input_spec=[self.x]) class TestExportPrunedGraph(unittest.TestCase): def setUp(self): self.x = paddle.to_tensor(np.array([1])) self.y = paddle.to_tensor(np.array([-1])) def test_prune_graph(self): model = Logic() paddle.jit.to_static(model) out = model(self.x, self.y, z=True) paddle.onnx.export( model, 'pruned', input_spec=[self.x], output_spec=[out]) if __name__ == '__main__': unittest.main()