# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import contextlib import unittest import numpy as np import six import unittest import paddle import paddle.fluid as fluid import paddle.fluid.dygraph as dygraph from paddle.fluid.dygraph.nn import Linear import paddle.fluid.core as core class MLP(fluid.Layer): def __init__(self, param_attr=None, bias_attr=None): super(MLP, self).__init__() self._linear1 = Linear(784, 10) self._linear2 = Linear(10, 10) def forward(self, inputs): y = self._linear1(inputs) y = self._linear2(y) return y class TestDataParallelStateDict(unittest.TestCase): def test_data_parallel_state_dict(self): with fluid.dygraph.guard(): strategy = paddle.imperative.prepare_context() mlp = MLP() parallel_mlp = dygraph.parallel.DataParallel(mlp, strategy) single_state = mlp.state_dict() parallel_state = parallel_mlp.state_dict() base_para = {} place = fluid.CPUPlace() if not core.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) for k, v in single_state.items(): self.assertTrue(k in parallel_state) self.assertTrue( np.array_equal(v.numpy(), parallel_state[k].numpy())) base_para[k] = v.numpy() for k, v in parallel_state.items(): np_t = v.numpy() var = v.value().get_tensor() var.set(np.zeros_like(np_t), place) self.assertTrue(np.sum(np.abs(v.numpy())) == 0) parallel_mlp.set_dict(base_para) parallel_state = parallel_mlp.state_dict() for k, v in parallel_state.items(): self.assertTrue(np.array_equal(v.numpy(), base_para[k])) parallel_mlp.load_dict(base_para) if __name__ == '__main__': unittest.main()